| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvscl.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clmvscl.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | clmvscl.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | clmvscl.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | clmvsdir.a |  |-  .+ = ( +g ` W ) | 
						
							| 6 | 2 | clmadd |  |-  ( W e. CMod -> + = ( +g ` F ) ) | 
						
							| 7 | 6 | oveqd |  |-  ( W e. CMod -> ( Q + R ) = ( Q ( +g ` F ) R ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( W e. CMod -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) | 
						
							| 10 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 12 | 1 5 2 3 4 11 | lmodvsdir |  |-  ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) | 
						
							| 13 | 10 12 | sylan |  |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) | 
						
							| 14 | 9 13 | eqtrd |  |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |