| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmpm1dir.v |
|- V = ( Base ` W ) |
| 2 |
|
clmpm1dir.s |
|- .x. = ( .s ` W ) |
| 3 |
|
clmpm1dir.a |
|- .+ = ( +g ` W ) |
| 4 |
|
clmvsrinv.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 7 |
1 5 6 2
|
clmvneg1 |
|- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) = ( ( invg ` W ) ` A ) ) |
| 8 |
7
|
oveq1d |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = ( ( ( invg ` W ) ` A ) .+ A ) ) |
| 9 |
|
clmgrp |
|- ( W e. CMod -> W e. Grp ) |
| 10 |
1 3 4 5
|
grplinv |
|- ( ( W e. Grp /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
| 11 |
9 10
|
sylan |
|- ( ( W e. CMod /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
| 12 |
8 11
|
eqtrd |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = .0. ) |