Step |
Hyp |
Ref |
Expression |
1 |
|
clmpm1dir.v |
|- V = ( Base ` W ) |
2 |
|
clmpm1dir.s |
|- .x. = ( .s ` W ) |
3 |
|
clmpm1dir.a |
|- .+ = ( +g ` W ) |
4 |
|
clmvsrinv.0 |
|- .0. = ( 0g ` W ) |
5 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
6 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
7 |
1 5 6 2
|
clmvneg1 |
|- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) = ( ( invg ` W ) ` A ) ) |
8 |
7
|
oveq1d |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = ( ( ( invg ` W ) ` A ) .+ A ) ) |
9 |
|
clmgrp |
|- ( W e. CMod -> W e. Grp ) |
10 |
1 3 4 5
|
grplinv |
|- ( ( W e. Grp /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
11 |
9 10
|
sylan |
|- ( ( W e. CMod /\ A e. V ) -> ( ( ( invg ` W ) ` A ) .+ A ) = .0. ) |
12 |
8 11
|
eqtrd |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) .+ A ) = .0. ) |