| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsneg.b |
|- B = ( Base ` W ) |
| 2 |
|
clmvsneg.f |
|- F = ( Scalar ` W ) |
| 3 |
|
clmvsneg.s |
|- .x. = ( .s ` W ) |
| 4 |
|
clmvsneg.n |
|- N = ( invg ` W ) |
| 5 |
|
clmvsneg.k |
|- K = ( Base ` F ) |
| 6 |
|
clmvsneg.w |
|- ( ph -> W e. CMod ) |
| 7 |
|
clmvsneg.x |
|- ( ph -> X e. B ) |
| 8 |
|
clmvsneg.r |
|- ( ph -> R e. K ) |
| 9 |
|
eqid |
|- ( invg ` F ) = ( invg ` F ) |
| 10 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 11 |
6 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
1 2 3 4 5 9 11 7 8
|
lmodvsneg |
|- ( ph -> ( N ` ( R .x. X ) ) = ( ( ( invg ` F ) ` R ) .x. X ) ) |
| 13 |
2 5
|
clmneg |
|- ( ( W e. CMod /\ R e. K ) -> -u R = ( ( invg ` F ) ` R ) ) |
| 14 |
6 8 13
|
syl2anc |
|- ( ph -> -u R = ( ( invg ` F ) ` R ) ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( -u R .x. X ) = ( ( ( invg ` F ) ` R ) .x. X ) ) |
| 16 |
12 15
|
eqtr4d |
|- ( ph -> ( N ` ( R .x. X ) ) = ( -u R .x. X ) ) |