| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvsubval.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvsubval.p |
|- .+ = ( +g ` W ) |
| 3 |
|
clmvsubval.m |
|- .- = ( -g ` W ) |
| 4 |
|
clmvsubval.f |
|- F = ( Scalar ` W ) |
| 5 |
|
clmvsubval.s |
|- .x. = ( .s ` W ) |
| 6 |
1 2 3 4 5
|
clmvsubval |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 7 |
|
clmabl |
|- ( W e. CMod -> W e. Abel ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> W e. Abel ) |
| 9 |
|
simp2 |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> A e. V ) |
| 10 |
|
simpl |
|- ( ( W e. CMod /\ B e. V ) -> W e. CMod ) |
| 11 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 12 |
4 11
|
clmneg1 |
|- ( W e. CMod -> -u 1 e. ( Base ` F ) ) |
| 13 |
12
|
adantr |
|- ( ( W e. CMod /\ B e. V ) -> -u 1 e. ( Base ` F ) ) |
| 14 |
|
simpr |
|- ( ( W e. CMod /\ B e. V ) -> B e. V ) |
| 15 |
1 4 5 11
|
clmvscl |
|- ( ( W e. CMod /\ -u 1 e. ( Base ` F ) /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 16 |
10 13 14 15
|
syl3anc |
|- ( ( W e. CMod /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 17 |
16
|
3adant2 |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 18 |
1 2
|
ablcom |
|- ( ( W e. Abel /\ A e. V /\ ( -u 1 .x. B ) e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) |
| 19 |
8 9 17 18
|
syl3anc |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) |
| 20 |
6 19
|
eqtrd |
|- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( ( -u 1 .x. B ) .+ A ) ) |