| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvz.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvz.m |
|- .- = ( -g ` W ) |
| 3 |
|
clmvz.s |
|- .x. = ( .s ` W ) |
| 4 |
|
clmvz.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
simpl |
|- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
| 6 |
|
clmgrp |
|- ( W e. CMod -> W e. Grp ) |
| 7 |
1 4
|
grpidcl |
|- ( W e. Grp -> .0. e. V ) |
| 8 |
6 7
|
syl |
|- ( W e. CMod -> .0. e. V ) |
| 9 |
8
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> .0. e. V ) |
| 10 |
|
simpr |
|- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
| 11 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 13 |
1 11 2 12 3
|
clmvsubval2 |
|- ( ( W e. CMod /\ .0. e. V /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
| 14 |
5 9 10 13
|
syl3anc |
|- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
| 15 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 16 |
12 15
|
clmneg1 |
|- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 17 |
16
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 18 |
1 12 3 15
|
clmvscl |
|- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 19 |
5 17 10 18
|
syl3anc |
|- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 20 |
1 11 4
|
grprid |
|- ( ( W e. Grp /\ ( -u 1 .x. A ) e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
| 21 |
6 19 20
|
syl2an2r |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
| 22 |
14 21
|
eqtrd |
|- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( -u 1 .x. A ) ) |