Step |
Hyp |
Ref |
Expression |
1 |
|
clmvz.v |
|- V = ( Base ` W ) |
2 |
|
clmvz.m |
|- .- = ( -g ` W ) |
3 |
|
clmvz.s |
|- .x. = ( .s ` W ) |
4 |
|
clmvz.0 |
|- .0. = ( 0g ` W ) |
5 |
|
simpl |
|- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
6 |
|
clmgrp |
|- ( W e. CMod -> W e. Grp ) |
7 |
1 4
|
grpidcl |
|- ( W e. Grp -> .0. e. V ) |
8 |
6 7
|
syl |
|- ( W e. CMod -> .0. e. V ) |
9 |
8
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> .0. e. V ) |
10 |
|
simpr |
|- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
11 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
12 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
13 |
1 11 2 12 3
|
clmvsubval2 |
|- ( ( W e. CMod /\ .0. e. V /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
14 |
5 9 10 13
|
syl3anc |
|- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
15 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
16 |
12 15
|
clmneg1 |
|- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
17 |
16
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
18 |
1 12 3 15
|
clmvscl |
|- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
19 |
5 17 10 18
|
syl3anc |
|- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
20 |
1 11 4
|
grprid |
|- ( ( W e. Grp /\ ( -u 1 .x. A ) e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
21 |
6 19 20
|
syl2an2r |
|- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
22 |
14 21
|
eqtrd |
|- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( -u 1 .x. A ) ) |