Metamath Proof Explorer


Theorem clmzss

Description: The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f
|- F = ( Scalar ` W )
clmsub.k
|- K = ( Base ` F )
Assertion clmzss
|- ( W e. CMod -> ZZ C_ K )

Proof

Step Hyp Ref Expression
1 clm0.f
 |-  F = ( Scalar ` W )
2 clmsub.k
 |-  K = ( Base ` F )
3 1 2 clmsubrg
 |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) )
4 zsssubrg
 |-  ( K e. ( SubRing ` CCfld ) -> ZZ C_ K )
5 3 4 syl
 |-  ( W e. CMod -> ZZ C_ K )