Description: The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clm0.f | |- F = ( Scalar ` W ) |
|
clmsub.k | |- K = ( Base ` F ) |
||
Assertion | clmzss | |- ( W e. CMod -> ZZ C_ K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | |- F = ( Scalar ` W ) |
|
2 | clmsub.k | |- K = ( Base ` F ) |
|
3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
4 | zsssubrg | |- ( K e. ( SubRing ` CCfld ) -> ZZ C_ K ) |
|
5 | 3 4 | syl | |- ( W e. CMod -> ZZ C_ K ) |