Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
dfclnbgr4 |
|- ( K e. ( Vtx ` G ) -> ( G ClNeighbVtx K ) = ( { K } u. ( G NeighbVtx K ) ) ) |
3 |
2
|
adantl |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G ClNeighbVtx K ) = ( { K } u. ( G NeighbVtx K ) ) ) |
4 |
|
nbgr0edg |
|- ( ( Edg ` G ) = (/) -> ( G NeighbVtx K ) = (/) ) |
5 |
4
|
adantr |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G NeighbVtx K ) = (/) ) |
6 |
5
|
uneq2d |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( { K } u. ( G NeighbVtx K ) ) = ( { K } u. (/) ) ) |
7 |
|
un0 |
|- ( { K } u. (/) ) = { K } |
8 |
7
|
a1i |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( { K } u. (/) ) = { K } ) |
9 |
3 6 8
|
3eqtrd |
|- ( ( ( Edg ` G ) = (/) /\ K e. ( Vtx ` G ) ) -> ( G ClNeighbVtx K ) = { K } ) |