Metamath Proof Explorer


Theorem clnbgrisvtx

Description: Every member N of the closed neighborhood of a vertex K is a vertex. (Contributed by AV, 9-May-2025)

Ref Expression
Hypothesis clnbgrvtxel.v
|- V = ( Vtx ` G )
Assertion clnbgrisvtx
|- ( N e. ( G ClNeighbVtx K ) -> N e. V )

Proof

Step Hyp Ref Expression
1 clnbgrvtxel.v
 |-  V = ( Vtx ` G )
2 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
3 1 2 clnbgrel
 |-  ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. V /\ K e. V ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) )
4 simpll
 |-  ( ( ( N e. V /\ K e. V ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) -> N e. V )
5 3 4 sylbi
 |-  ( N e. ( G ClNeighbVtx K ) -> N e. V )