Description: Every member N of the closed neighborhood of a vertex K is a vertex. (Contributed by AV, 9-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clnbgrvtxel.v | |- V = ( Vtx ` G ) |
|
Assertion | clnbgrisvtx | |- ( N e. ( G ClNeighbVtx K ) -> N e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbgrvtxel.v | |- V = ( Vtx ` G ) |
|
2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
3 | 1 2 | clnbgrel | |- ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. V /\ K e. V ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) ) |
4 | simpll | |- ( ( ( N e. V /\ K e. V ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) -> N e. V ) |
|
5 | 3 4 | sylbi | |- ( N e. ( G ClNeighbVtx K ) -> N e. V ) |