Description: The closed neighborhood is empty if the graph G or the vertex N are proper classes. (Contributed by AV, 7-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | clnbgrprc0 | |- ( -. ( G e. _V /\ N e. _V ) -> ( G ClNeighbVtx N ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clnbgr | |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) |
|
2 | 1 | reldmmpo | |- Rel dom ClNeighbVtx |
3 | 2 | ovprc | |- ( -. ( G e. _V /\ N e. _V ) -> ( G ClNeighbVtx N ) = (/) ) |