Metamath Proof Explorer


Theorem clnbgrprc0

Description: The closed neighborhood is empty if the graph G or the vertex N are proper classes. (Contributed by AV, 7-May-2025)

Ref Expression
Assertion clnbgrprc0
|- ( -. ( G e. _V /\ N e. _V ) -> ( G ClNeighbVtx N ) = (/) )

Proof

Step Hyp Ref Expression
1 df-clnbgr
 |-  ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) )
2 1 reldmmpo
 |-  Rel dom ClNeighbVtx
3 2 ovprc
 |-  ( -. ( G e. _V /\ N e. _V ) -> ( G ClNeighbVtx N ) = (/) )