Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) <-> ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
2 |
|
eqcom |
|- ( N = K <-> K = N ) |
3 |
|
prcom |
|- { K , N } = { N , K } |
4 |
3
|
sseq1i |
|- ( { K , N } C_ e <-> { N , K } C_ e ) |
5 |
4
|
rexbii |
|- ( E. e e. ( Edg ` G ) { K , N } C_ e <-> E. e e. ( Edg ` G ) { N , K } C_ e ) |
6 |
2 5
|
orbi12i |
|- ( ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) <-> ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
7 |
1 6
|
anbi12i |
|- ( ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) |
8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
9 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
10 |
8 9
|
clnbgrel |
|- ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) ) |
11 |
8 9
|
clnbgrel |
|- ( K e. ( G ClNeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) |
12 |
7 10 11
|
3bitr4i |
|- ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) |