Metamath Proof Explorer


Theorem clnbgrvtxel

Description: Every vertex K is a member of its closed neighborhood. (Contributed by AV, 10-May-2025)

Ref Expression
Hypothesis clnbgrvtxel.v
|- V = ( Vtx ` G )
Assertion clnbgrvtxel
|- ( K e. V -> K e. ( G ClNeighbVtx K ) )

Proof

Step Hyp Ref Expression
1 clnbgrvtxel.v
 |-  V = ( Vtx ` G )
2 id
 |-  ( K e. V -> K e. V )
3 eqidd
 |-  ( K e. V -> K = K )
4 3 orcd
 |-  ( K e. V -> ( K = K \/ E. e e. ( Edg ` G ) { K , K } C_ e ) )
5 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
6 1 5 clnbgrel
 |-  ( K e. ( G ClNeighbVtx K ) <-> ( ( K e. V /\ K e. V ) /\ ( K = K \/ E. e e. ( Edg ` G ) { K , K } C_ e ) ) )
7 2 2 4 6 syl21anbrc
 |-  ( K e. V -> K e. ( G ClNeighbVtx K ) )