Description: Every vertex K is a member of its closed neighborhood. (Contributed by AV, 10-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clnbgrvtxel.v | |- V = ( Vtx ` G ) |
|
Assertion | clnbgrvtxel | |- ( K e. V -> K e. ( G ClNeighbVtx K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbgrvtxel.v | |- V = ( Vtx ` G ) |
|
2 | id | |- ( K e. V -> K e. V ) |
|
3 | eqidd | |- ( K e. V -> K = K ) |
|
4 | 3 | orcd | |- ( K e. V -> ( K = K \/ E. e e. ( Edg ` G ) { K , K } C_ e ) ) |
5 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
6 | 1 5 | clnbgrel | |- ( K e. ( G ClNeighbVtx K ) <-> ( ( K e. V /\ K e. V ) /\ ( K = K \/ E. e e. ( Edg ` G ) { K , K } C_ e ) ) ) |
7 | 2 2 4 6 | syl21anbrc | |- ( K e. V -> K e. ( G ClNeighbVtx K ) ) |