Metamath Proof Explorer


Theorem clnbusgrfi

Description: The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbusgrf1o.v
|- V = ( Vtx ` G )
clnbusgrf1o.e
|- E = ( Edg ` G )
Assertion clnbusgrfi
|- ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( G ClNeighbVtx U ) e. Fin )

Proof

Step Hyp Ref Expression
1 clnbusgrf1o.v
 |-  V = ( Vtx ` G )
2 clnbusgrf1o.e
 |-  E = ( Edg ` G )
3 rabfi
 |-  ( E e. Fin -> { e e. E | U e. e } e. Fin )
4 3 3ad2ant2
 |-  ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> { e e. E | U e. e } e. Fin )
5 1 2 edgusgrclnbfin
 |-  ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) )
6 5 3adant2
 |-  ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) )
7 4 6 mpbird
 |-  ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( G ClNeighbVtx U ) e. Fin )