Description: The closure of the empty set. (Contributed by NM, 2-Oct-2007) (Proof shortened by Jim Kingdon, 12-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | cls0 | |- ( J e. Top -> ( ( cls ` J ) ` (/) ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cld | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) |
|
2 | cldcls | |- ( (/) e. ( Clsd ` J ) -> ( ( cls ` J ) ` (/) ) = (/) ) |
|
3 | 1 2 | syl | |- ( J e. Top -> ( ( cls ` J ) ` (/) ) = (/) ) |