Description: The closure of the empty set. (Contributed by NM, 2-Oct-2007) (Proof shortened by Jim Kingdon, 12-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cls0 | |- ( J e. Top -> ( ( cls ` J ) ` (/) ) = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0cld | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) | |
| 2 | cldcls | |- ( (/) e. ( Clsd ` J ) -> ( ( cls ` J ) ` (/) ) = (/) ) | |
| 3 | 1 2 | syl | |- ( J e. Top -> ( ( cls ` J ) ` (/) ) = (/) ) |