Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
1
|
clsval |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
3 |
1
|
topcld |
|- ( J e. Top -> X e. ( Clsd ` J ) ) |
4 |
3
|
anim1i |
|- ( ( J e. Top /\ S C_ X ) -> ( X e. ( Clsd ` J ) /\ S C_ X ) ) |
5 |
|
sseq2 |
|- ( x = X -> ( S C_ x <-> S C_ X ) ) |
6 |
5
|
elrab |
|- ( X e. { x e. ( Clsd ` J ) | S C_ x } <-> ( X e. ( Clsd ` J ) /\ S C_ X ) ) |
7 |
4 6
|
sylibr |
|- ( ( J e. Top /\ S C_ X ) -> X e. { x e. ( Clsd ` J ) | S C_ x } ) |
8 |
7
|
ne0d |
|- ( ( J e. Top /\ S C_ X ) -> { x e. ( Clsd ` J ) | S C_ x } =/= (/) ) |
9 |
|
ssrab2 |
|- { x e. ( Clsd ` J ) | S C_ x } C_ ( Clsd ` J ) |
10 |
|
intcld |
|- ( ( { x e. ( Clsd ` J ) | S C_ x } =/= (/) /\ { x e. ( Clsd ` J ) | S C_ x } C_ ( Clsd ` J ) ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. ( Clsd ` J ) ) |
11 |
8 9 10
|
sylancl |
|- ( ( J e. Top /\ S C_ X ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. ( Clsd ` J ) ) |
12 |
2 11
|
eqeltrd |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |