Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
1
|
clscld |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |
3 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
4 |
1
|
iscld3 |
|- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X ) -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) ) |
5 |
3 4
|
syldan |
|- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) ) |
6 |
2 5
|
mpbid |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) |