Metamath Proof Explorer


Theorem clslp

Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1
|- X = U. J
Assertion clslp
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) )

Proof

Step Hyp Ref Expression
1 lpfval.1
 |-  X = U. J
2 1 neindisj
 |-  ( ( ( J e. Top /\ S C_ X ) /\ ( x e. ( ( cls ` J ) ` S ) /\ n e. ( ( nei ` J ) ` { x } ) ) ) -> ( n i^i S ) =/= (/) )
3 2 expr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i S ) =/= (/) ) )
4 3 adantr
 |-  ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i S ) =/= (/) ) )
5 difsn
 |-  ( -. x e. S -> ( S \ { x } ) = S )
6 5 ineq2d
 |-  ( -. x e. S -> ( n i^i ( S \ { x } ) ) = ( n i^i S ) )
7 6 neeq1d
 |-  ( -. x e. S -> ( ( n i^i ( S \ { x } ) ) =/= (/) <-> ( n i^i S ) =/= (/) ) )
8 7 adantl
 |-  ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( ( n i^i ( S \ { x } ) ) =/= (/) <-> ( n i^i S ) =/= (/) ) )
9 4 8 sylibrd
 |-  ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i ( S \ { x } ) ) =/= (/) ) )
10 9 ex
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i ( S \ { x } ) ) =/= (/) ) ) )
11 10 ralrimdv
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) )
12 simpll
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> J e. Top )
13 simplr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> S C_ X )
14 1 clsss3
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X )
15 14 sselda
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> x e. X )
16 1 islp2
 |-  ( ( J e. Top /\ S C_ X /\ x e. X ) -> ( x e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) )
17 12 13 15 16 syl3anc
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( x e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) )
18 11 17 sylibrd
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> x e. ( ( limPt ` J ) ` S ) ) )
19 18 orrd
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( x e. S \/ x e. ( ( limPt ` J ) ` S ) ) )
20 elun
 |-  ( x e. ( S u. ( ( limPt ` J ) ` S ) ) <-> ( x e. S \/ x e. ( ( limPt ` J ) ` S ) ) )
21 19 20 sylibr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> x e. ( S u. ( ( limPt ` J ) ` S ) ) )
22 21 ex
 |-  ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` S ) -> x e. ( S u. ( ( limPt ` J ) ` S ) ) ) )
23 22 ssrdv
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) )
24 1 sscls
 |-  ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) )
25 1 lpsscls
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) )
26 24 25 unssd
 |-  ( ( J e. Top /\ S C_ X ) -> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( cls ` J ) ` S ) )
27 23 26 eqssd
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) )