| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
|
simp1 |
|- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> J e. Top ) |
| 3 |
|
simp2 |
|- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> S C_ X ) |
| 4 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 5 |
4
|
sseld |
|- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> P e. X ) ) |
| 6 |
5
|
3impia |
|- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. X ) |
| 7 |
|
simp3 |
|- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> P e. ( ( cls ` J ) ` S ) ) |
| 8 |
1
|
elcls |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 9 |
8
|
biimpa |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 10 |
2 3 6 7 9
|
syl31anc |
|- ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 11 |
|
eleq2 |
|- ( x = U -> ( P e. x <-> P e. U ) ) |
| 12 |
|
ineq1 |
|- ( x = U -> ( x i^i S ) = ( U i^i S ) ) |
| 13 |
12
|
neeq1d |
|- ( x = U -> ( ( x i^i S ) =/= (/) <-> ( U i^i S ) =/= (/) ) ) |
| 14 |
11 13
|
imbi12d |
|- ( x = U -> ( ( P e. x -> ( x i^i S ) =/= (/) ) <-> ( P e. U -> ( U i^i S ) =/= (/) ) ) ) |
| 15 |
14
|
rspccv |
|- ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( U e. J -> ( P e. U -> ( U i^i S ) =/= (/) ) ) ) |
| 16 |
15
|
imp32 |
|- ( ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) ) |
| 17 |
10 16
|
sylan |
|- ( ( ( J e. Top /\ S C_ X /\ P e. ( ( cls ` J ) ` S ) ) /\ ( U e. J /\ P e. U ) ) -> ( U i^i S ) =/= (/) ) |