Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clsslem | |- ( R C_ S -> |^| { r | ( R C_ r /\ ph ) } C_ |^| { r | ( S C_ r /\ ph ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr2 | |- ( R C_ S -> ( S C_ r -> R C_ r ) ) | |
| 2 | 1 | anim1d | |- ( R C_ S -> ( ( S C_ r /\ ph ) -> ( R C_ r /\ ph ) ) ) | 
| 3 | 2 | ss2abdv |  |-  ( R C_ S -> { r | ( S C_ r /\ ph ) } C_ { r | ( R C_ r /\ ph ) } ) | 
| 4 | intss |  |-  ( { r | ( S C_ r /\ ph ) } C_ { r | ( R C_ r /\ ph ) } -> |^| { r | ( R C_ r /\ ph ) } C_ |^| { r | ( S C_ r /\ ph ) } ) | |
| 5 | 3 4 | syl |  |-  ( R C_ S -> |^| { r | ( R C_ r /\ ph ) } C_ |^| { r | ( S C_ r /\ ph ) } ) |