| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
|
sstr2 |
|- ( T C_ S -> ( S C_ x -> T C_ x ) ) |
| 3 |
2
|
adantr |
|- ( ( T C_ S /\ x e. ( Clsd ` J ) ) -> ( S C_ x -> T C_ x ) ) |
| 4 |
3
|
ss2rabdv |
|- ( T C_ S -> { x e. ( Clsd ` J ) | S C_ x } C_ { x e. ( Clsd ` J ) | T C_ x } ) |
| 5 |
|
intss |
|- ( { x e. ( Clsd ` J ) | S C_ x } C_ { x e. ( Clsd ` J ) | T C_ x } -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 6 |
4 5
|
syl |
|- ( T C_ S -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 7 |
6
|
3ad2ant3 |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> |^| { x e. ( Clsd ` J ) | T C_ x } C_ |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 8 |
|
simp1 |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> J e. Top ) |
| 9 |
|
sstr2 |
|- ( T C_ S -> ( S C_ X -> T C_ X ) ) |
| 10 |
9
|
impcom |
|- ( ( S C_ X /\ T C_ S ) -> T C_ X ) |
| 11 |
10
|
3adant1 |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> T C_ X ) |
| 12 |
1
|
clsval |
|- ( ( J e. Top /\ T C_ X ) -> ( ( cls ` J ) ` T ) = |^| { x e. ( Clsd ` J ) | T C_ x } ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` T ) = |^| { x e. ( Clsd ` J ) | T C_ x } ) |
| 14 |
1
|
clsval |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 15 |
14
|
3adant3 |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 16 |
7 13 15
|
3sstr4d |
|- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` T ) C_ ( ( cls ` J ) ` S ) ) |