| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|- X = U. J |
| 2 |
|
cldrcl |
|- ( C e. ( Clsd ` J ) -> J e. Top ) |
| 3 |
2
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> J e. Top ) |
| 4 |
1
|
cldss |
|- ( C e. ( Clsd ` J ) -> C C_ X ) |
| 5 |
4
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> C C_ X ) |
| 6 |
|
simpr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> S C_ C ) |
| 7 |
1
|
clsss |
|- ( ( J e. Top /\ C C_ X /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
| 8 |
3 5 6 7
|
syl3anc |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
| 9 |
|
cldcls |
|- ( C e. ( Clsd ` J ) -> ( ( cls ` J ) ` C ) = C ) |
| 10 |
9
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` C ) = C ) |
| 11 |
8 10
|
sseqtrd |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ C ) |