Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
|
cldrcl |
|- ( C e. ( Clsd ` J ) -> J e. Top ) |
3 |
2
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> J e. Top ) |
4 |
1
|
cldss |
|- ( C e. ( Clsd ` J ) -> C C_ X ) |
5 |
4
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> C C_ X ) |
6 |
|
simpr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> S C_ C ) |
7 |
1
|
clsss |
|- ( ( J e. Top /\ C C_ X /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
8 |
3 5 6 7
|
syl3anc |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
9 |
|
cldcls |
|- ( C e. ( Clsd ` J ) -> ( ( cls ` J ) ` C ) = C ) |
10 |
9
|
adantr |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` C ) = C ) |
11 |
8 10
|
sseqtrd |
|- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ C ) |