Metamath Proof Explorer


Theorem clstop

Description: The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007) (Proof shortened by Jim Kingdon, 11-Mar-2023)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion clstop
|- ( J e. Top -> ( ( cls ` J ) ` X ) = X )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 topcld
 |-  ( J e. Top -> X e. ( Clsd ` J ) )
3 cldcls
 |-  ( X e. ( Clsd ` J ) -> ( ( cls ` J ) ` X ) = X )
4 2 3 syl
 |-  ( J e. Top -> ( ( cls ` J ) ` X ) = X )