| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscld.1 |
|- X = U. J |
| 2 |
1
|
clsfval |
|- ( J e. Top -> ( cls ` J ) = ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ) |
| 3 |
2
|
fveq1d |
|- ( J e. Top -> ( ( cls ` J ) ` S ) = ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) ) |
| 4 |
3
|
adantr |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) ) |
| 5 |
|
eqid |
|- ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) = ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) |
| 6 |
|
sseq1 |
|- ( y = S -> ( y C_ x <-> S C_ x ) ) |
| 7 |
6
|
rabbidv |
|- ( y = S -> { x e. ( Clsd ` J ) | y C_ x } = { x e. ( Clsd ` J ) | S C_ x } ) |
| 8 |
7
|
inteqd |
|- ( y = S -> |^| { x e. ( Clsd ` J ) | y C_ x } = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 9 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
| 10 |
|
elpw2g |
|- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
| 11 |
9 10
|
syl |
|- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 12 |
11
|
biimpar |
|- ( ( J e. Top /\ S C_ X ) -> S e. ~P X ) |
| 13 |
1
|
topcld |
|- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 14 |
|
sseq2 |
|- ( x = X -> ( S C_ x <-> S C_ X ) ) |
| 15 |
14
|
rspcev |
|- ( ( X e. ( Clsd ` J ) /\ S C_ X ) -> E. x e. ( Clsd ` J ) S C_ x ) |
| 16 |
13 15
|
sylan |
|- ( ( J e. Top /\ S C_ X ) -> E. x e. ( Clsd ` J ) S C_ x ) |
| 17 |
|
intexrab |
|- ( E. x e. ( Clsd ` J ) S C_ x <-> |^| { x e. ( Clsd ` J ) | S C_ x } e. _V ) |
| 18 |
16 17
|
sylib |
|- ( ( J e. Top /\ S C_ X ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. _V ) |
| 19 |
5 8 12 18
|
fvmptd3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 20 |
4 19
|
eqtrd |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |