| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwlkclwwlk.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | simp1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> G e. USPGraph ) | 
						
							| 4 |  | wrdsymb1 |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) | 
						
							| 5 | 4 | s1cld |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) | 
						
							| 6 |  | ccatcl |  |-  ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) | 
						
							| 7 | 5 6 | syldan |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) | 
						
							| 9 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 10 |  | 1e2m1 |  |-  1 = ( 2 - 1 ) | 
						
							| 11 | 10 | breq1i |  |-  ( 1 <_ ( # ` P ) <-> ( 2 - 1 ) <_ ( # ` P ) ) | 
						
							| 12 |  | 2re |  |-  2 e. RR | 
						
							| 13 | 12 | a1i |  |-  ( ( # ` P ) e. NN0 -> 2 e. RR ) | 
						
							| 14 |  | 1red |  |-  ( ( # ` P ) e. NN0 -> 1 e. RR ) | 
						
							| 15 |  | nn0re |  |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) | 
						
							| 16 | 13 14 15 | lesubaddd |  |-  ( ( # ` P ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) | 
						
							| 17 | 11 16 | bitrid |  |-  ( ( # ` P ) e. NN0 -> ( 1 <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) | 
						
							| 18 | 9 17 | syl |  |-  ( P e. Word V -> ( 1 <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) | 
						
							| 19 | 18 | biimpa |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( ( # ` P ) + 1 ) ) | 
						
							| 20 |  | s1len |  |-  ( # ` <" ( P ` 0 ) "> ) = 1 | 
						
							| 21 | 20 | oveq2i |  |-  ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + 1 ) | 
						
							| 22 | 19 21 | breqtrrdi |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) | 
						
							| 23 |  | ccatlen |  |-  ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) | 
						
							| 24 | 5 23 | syldan |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) | 
						
							| 25 | 22 24 | breqtrrd |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) | 
						
							| 26 | 25 | 3adant1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) | 
						
							| 27 | 1 2 | clwlkclwwlk |  |-  ( ( G e. USPGraph /\ ( P ++ <" ( P ` 0 ) "> ) e. Word V /\ 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) | 
						
							| 28 | 3 8 26 27 | syl3anc |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) | 
						
							| 29 |  | wrdlenccats1lenm1 |  |-  ( P e. Word V -> ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) = ( # ` P ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( P e. Word V -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) ) | 
						
							| 32 |  | simpl |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) | 
						
							| 33 |  | eqidd |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) = ( # ` P ) ) | 
						
							| 34 |  | pfxccatid |  |-  ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ ( # ` P ) = ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) = P ) | 
						
							| 35 | 32 5 33 34 | syl3anc |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) = P ) | 
						
							| 36 | 31 35 | eqtr2d |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P e. ( ClWWalks ` G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) | 
						
							| 38 |  | lswccats1fst |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) | 
						
							| 39 | 38 | biantrurd |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) | 
						
							| 40 | 37 39 | bitr2d |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) <-> P e. ( ClWWalks ` G ) ) ) | 
						
							| 41 | 40 | 3adant1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) <-> P e. ( ClWWalks ` G ) ) ) | 
						
							| 42 | 28 41 | bitrd |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> P e. ( ClWWalks ` G ) ) ) |