Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( ClWalks ` G ) e. _V |
2 |
1
|
rabex |
|- { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } e. _V |
3 |
|
fvex |
|- ( ClWWalks ` G ) e. _V |
4 |
|
2fveq3 |
|- ( w = u -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` u ) ) ) |
5 |
4
|
breq2d |
|- ( w = u -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` u ) ) ) ) |
6 |
5
|
cbvrabv |
|- { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { u e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` u ) ) } |
7 |
|
fveq2 |
|- ( d = c -> ( 2nd ` d ) = ( 2nd ` c ) ) |
8 |
|
2fveq3 |
|- ( d = c -> ( # ` ( 2nd ` d ) ) = ( # ` ( 2nd ` c ) ) ) |
9 |
8
|
oveq1d |
|- ( d = c -> ( ( # ` ( 2nd ` d ) ) - 1 ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
10 |
7 9
|
oveq12d |
|- ( d = c -> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
11 |
10
|
cbvmptv |
|- ( d e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) = ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
12 |
6 11
|
clwlkclwwlkf1o |
|- ( G e. USPGraph -> ( d e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) ) |
13 |
|
f1oen2g |
|- ( ( { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } e. _V /\ ( ClWWalks ` G ) e. _V /\ ( d e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) ) -> { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ~~ ( ClWWalks ` G ) ) |
14 |
2 3 12 13
|
mp3an12i |
|- ( G e. USPGraph -> { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ~~ ( ClWWalks ` G ) ) |