Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|- C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
2 |
|
clwlkclwwlkf.a |
|- A = ( 1st ` U ) |
3 |
|
clwlkclwwlkf.b |
|- B = ( 2nd ` U ) |
4 |
|
clwlkclwwlkf.d |
|- D = ( 1st ` W ) |
5 |
|
clwlkclwwlkf.e |
|- E = ( 2nd ` W ) |
6 |
1 2 3
|
clwlkclwwlkflem |
|- ( U e. C -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |
7 |
1 4 5
|
clwlkclwwlkflem |
|- ( W e. C -> ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) |
8 |
6 7
|
anim12i |
|- ( ( U e. C /\ W e. C ) -> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) ) |
9 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
10 |
9
|
wlkpwrd |
|- ( A ( Walks ` G ) B -> B e. Word ( Vtx ` G ) ) |
11 |
10
|
3ad2ant1 |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> B e. Word ( Vtx ` G ) ) |
12 |
9
|
wlkpwrd |
|- ( D ( Walks ` G ) E -> E e. Word ( Vtx ` G ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) -> E e. Word ( Vtx ` G ) ) |
14 |
11 13
|
anim12i |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( B e. Word ( Vtx ` G ) /\ E e. Word ( Vtx ` G ) ) ) |
15 |
|
nnnn0 |
|- ( ( # ` A ) e. NN -> ( # ` A ) e. NN0 ) |
16 |
15
|
3ad2ant3 |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( # ` A ) e. NN0 ) |
17 |
|
nnnn0 |
|- ( ( # ` D ) e. NN -> ( # ` D ) e. NN0 ) |
18 |
17
|
3ad2ant3 |
|- ( ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) -> ( # ` D ) e. NN0 ) |
19 |
16 18
|
anim12i |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( ( # ` A ) e. NN0 /\ ( # ` D ) e. NN0 ) ) |
20 |
|
wlklenvp1 |
|- ( A ( Walks ` G ) B -> ( # ` B ) = ( ( # ` A ) + 1 ) ) |
21 |
|
nnre |
|- ( ( # ` A ) e. NN -> ( # ` A ) e. RR ) |
22 |
21
|
lep1d |
|- ( ( # ` A ) e. NN -> ( # ` A ) <_ ( ( # ` A ) + 1 ) ) |
23 |
|
breq2 |
|- ( ( # ` B ) = ( ( # ` A ) + 1 ) -> ( ( # ` A ) <_ ( # ` B ) <-> ( # ` A ) <_ ( ( # ` A ) + 1 ) ) ) |
24 |
22 23
|
syl5ibr |
|- ( ( # ` B ) = ( ( # ` A ) + 1 ) -> ( ( # ` A ) e. NN -> ( # ` A ) <_ ( # ` B ) ) ) |
25 |
20 24
|
syl |
|- ( A ( Walks ` G ) B -> ( ( # ` A ) e. NN -> ( # ` A ) <_ ( # ` B ) ) ) |
26 |
25
|
a1d |
|- ( A ( Walks ` G ) B -> ( ( B ` 0 ) = ( B ` ( # ` A ) ) -> ( ( # ` A ) e. NN -> ( # ` A ) <_ ( # ` B ) ) ) ) |
27 |
26
|
3imp |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( # ` A ) <_ ( # ` B ) ) |
28 |
|
wlklenvp1 |
|- ( D ( Walks ` G ) E -> ( # ` E ) = ( ( # ` D ) + 1 ) ) |
29 |
|
nnre |
|- ( ( # ` D ) e. NN -> ( # ` D ) e. RR ) |
30 |
29
|
lep1d |
|- ( ( # ` D ) e. NN -> ( # ` D ) <_ ( ( # ` D ) + 1 ) ) |
31 |
|
breq2 |
|- ( ( # ` E ) = ( ( # ` D ) + 1 ) -> ( ( # ` D ) <_ ( # ` E ) <-> ( # ` D ) <_ ( ( # ` D ) + 1 ) ) ) |
32 |
30 31
|
syl5ibr |
|- ( ( # ` E ) = ( ( # ` D ) + 1 ) -> ( ( # ` D ) e. NN -> ( # ` D ) <_ ( # ` E ) ) ) |
33 |
28 32
|
syl |
|- ( D ( Walks ` G ) E -> ( ( # ` D ) e. NN -> ( # ` D ) <_ ( # ` E ) ) ) |
34 |
33
|
a1d |
|- ( D ( Walks ` G ) E -> ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( ( # ` D ) e. NN -> ( # ` D ) <_ ( # ` E ) ) ) ) |
35 |
34
|
3imp |
|- ( ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) -> ( # ` D ) <_ ( # ` E ) ) |
36 |
27 35
|
anim12i |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( ( # ` A ) <_ ( # ` B ) /\ ( # ` D ) <_ ( # ` E ) ) ) |
37 |
14 19 36
|
3jca |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( ( B e. Word ( Vtx ` G ) /\ E e. Word ( Vtx ` G ) ) /\ ( ( # ` A ) e. NN0 /\ ( # ` D ) e. NN0 ) /\ ( ( # ` A ) <_ ( # ` B ) /\ ( # ` D ) <_ ( # ` E ) ) ) ) |
38 |
|
pfxeq |
|- ( ( ( B e. Word ( Vtx ` G ) /\ E e. Word ( Vtx ` G ) ) /\ ( ( # ` A ) e. NN0 /\ ( # ` D ) e. NN0 ) /\ ( ( # ` A ) <_ ( # ` B ) /\ ( # ` D ) <_ ( # ` E ) ) ) -> ( ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) <-> ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) ) |
39 |
8 37 38
|
3syl |
|- ( ( U e. C /\ W e. C ) -> ( ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) <-> ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) ) |
40 |
39
|
biimp3a |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) |