Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|- C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
2 |
|
clwlkclwwlkf.a |
|- A = ( 1st ` U ) |
3 |
|
clwlkclwwlkf.b |
|- B = ( 2nd ` U ) |
4 |
|
clwlkclwwlkf.d |
|- D = ( 1st ` W ) |
5 |
|
clwlkclwwlkf.e |
|- E = ( 2nd ` W ) |
6 |
1 2 3 4 5
|
clwlkclwwlkf1lem2 |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) |
7 |
|
simprr |
|- ( ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) /\ ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) |
8 |
1 2 3
|
clwlkclwwlkflem |
|- ( U e. C -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |
9 |
1 4 5
|
clwlkclwwlkflem |
|- ( W e. C -> ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) |
10 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` A ) ) <-> ( # ` A ) e. NN ) |
11 |
10
|
biimpri |
|- ( ( # ` A ) e. NN -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
13 |
12
|
adantr |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
14 |
13
|
adantr |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
15 |
|
fveq2 |
|- ( i = 0 -> ( B ` i ) = ( B ` 0 ) ) |
16 |
|
fveq2 |
|- ( i = 0 -> ( E ` i ) = ( E ` 0 ) ) |
17 |
15 16
|
eqeq12d |
|- ( i = 0 -> ( ( B ` i ) = ( E ` i ) <-> ( B ` 0 ) = ( E ` 0 ) ) ) |
18 |
17
|
rspcv |
|- ( 0 e. ( 0 ..^ ( # ` A ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) -> ( B ` 0 ) = ( E ` 0 ) ) ) |
19 |
14 18
|
syl |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) -> ( B ` 0 ) = ( E ` 0 ) ) ) |
20 |
|
simpl |
|- ( ( ( B ` ( # ` A ) ) = ( B ` 0 ) /\ ( ( B ` 0 ) = ( E ` 0 ) /\ ( E ` 0 ) = ( E ` ( # ` D ) ) ) ) -> ( B ` ( # ` A ) ) = ( B ` 0 ) ) |
21 |
|
eqtr |
|- ( ( ( B ` 0 ) = ( E ` 0 ) /\ ( E ` 0 ) = ( E ` ( # ` D ) ) ) -> ( B ` 0 ) = ( E ` ( # ` D ) ) ) |
22 |
21
|
adantl |
|- ( ( ( B ` ( # ` A ) ) = ( B ` 0 ) /\ ( ( B ` 0 ) = ( E ` 0 ) /\ ( E ` 0 ) = ( E ` ( # ` D ) ) ) ) -> ( B ` 0 ) = ( E ` ( # ` D ) ) ) |
23 |
20 22
|
eqtrd |
|- ( ( ( B ` ( # ` A ) ) = ( B ` 0 ) /\ ( ( B ` 0 ) = ( E ` 0 ) /\ ( E ` 0 ) = ( E ` ( # ` D ) ) ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) |
24 |
23
|
exp32 |
|- ( ( B ` ( # ` A ) ) = ( B ` 0 ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
25 |
24
|
com23 |
|- ( ( B ` ( # ` A ) ) = ( B ` 0 ) -> ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
26 |
25
|
eqcoms |
|- ( ( B ` 0 ) = ( B ` ( # ` A ) ) -> ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
27 |
26
|
3ad2ant2 |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
28 |
27
|
com12 |
|- ( ( E ` 0 ) = ( E ` ( # ` D ) ) -> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
29 |
28
|
3ad2ant2 |
|- ( ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) -> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) ) |
30 |
29
|
impcom |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) |
31 |
30
|
adantr |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) ) |
32 |
31
|
imp |
|- ( ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) /\ ( B ` 0 ) = ( E ` 0 ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` D ) ) ) |
33 |
|
fveq2 |
|- ( ( # ` D ) = ( # ` A ) -> ( E ` ( # ` D ) ) = ( E ` ( # ` A ) ) ) |
34 |
33
|
eqcoms |
|- ( ( # ` A ) = ( # ` D ) -> ( E ` ( # ` D ) ) = ( E ` ( # ` A ) ) ) |
35 |
34
|
adantl |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> ( E ` ( # ` D ) ) = ( E ` ( # ` A ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) /\ ( B ` 0 ) = ( E ` 0 ) ) -> ( E ` ( # ` D ) ) = ( E ` ( # ` A ) ) ) |
37 |
32 36
|
eqtrd |
|- ( ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) /\ ( B ` 0 ) = ( E ` 0 ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) |
38 |
37
|
ex |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> ( ( B ` 0 ) = ( E ` 0 ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
39 |
19 38
|
syld |
|- ( ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) /\ ( # ` A ) = ( # ` D ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
40 |
39
|
ex |
|- ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) /\ ( D ( Walks ` G ) E /\ ( E ` 0 ) = ( E ` ( # ` D ) ) /\ ( # ` D ) e. NN ) ) -> ( ( # ` A ) = ( # ` D ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) ) |
41 |
8 9 40
|
syl2an |
|- ( ( U e. C /\ W e. C ) -> ( ( # ` A ) = ( # ` D ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) ) |
42 |
41
|
impd |
|- ( ( U e. C /\ W e. C ) -> ( ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
43 |
42
|
3adant3 |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
44 |
43
|
imp |
|- ( ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) /\ ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) -> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) |
45 |
7 44
|
jca |
|- ( ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) /\ ( ( # ` A ) = ( # ` D ) /\ A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) /\ ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
46 |
6 45
|
mpdan |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) /\ ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
47 |
|
fvex |
|- ( # ` A ) e. _V |
48 |
|
fveq2 |
|- ( i = ( # ` A ) -> ( B ` i ) = ( B ` ( # ` A ) ) ) |
49 |
|
fveq2 |
|- ( i = ( # ` A ) -> ( E ` i ) = ( E ` ( # ` A ) ) ) |
50 |
48 49
|
eqeq12d |
|- ( i = ( # ` A ) -> ( ( B ` i ) = ( E ` i ) <-> ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
51 |
50
|
ralunsn |
|- ( ( # ` A ) e. _V -> ( A. i e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ( B ` i ) = ( E ` i ) <-> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) /\ ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) ) |
52 |
47 51
|
ax-mp |
|- ( A. i e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ( B ` i ) = ( E ` i ) <-> ( A. i e. ( 0 ..^ ( # ` A ) ) ( B ` i ) = ( E ` i ) /\ ( B ` ( # ` A ) ) = ( E ` ( # ` A ) ) ) ) |
53 |
46 52
|
sylibr |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> A. i e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ( B ` i ) = ( E ` i ) ) |
54 |
|
nnnn0 |
|- ( ( # ` A ) e. NN -> ( # ` A ) e. NN0 ) |
55 |
|
elnn0uz |
|- ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
56 |
54 55
|
sylib |
|- ( ( # ` A ) e. NN -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
57 |
56
|
3ad2ant3 |
|- ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
58 |
8 57
|
syl |
|- ( U e. C -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
59 |
58
|
3ad2ant1 |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
60 |
|
fzisfzounsn |
|- ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( 0 ... ( # ` A ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
61 |
59 60
|
syl |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( 0 ... ( # ` A ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
62 |
61
|
raleqdv |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> ( A. i e. ( 0 ... ( # ` A ) ) ( B ` i ) = ( E ` i ) <-> A. i e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ( B ` i ) = ( E ` i ) ) ) |
63 |
53 62
|
mpbird |
|- ( ( U e. C /\ W e. C /\ ( B prefix ( # ` A ) ) = ( E prefix ( # ` D ) ) ) -> A. i e. ( 0 ... ( # ` A ) ) ( B ` i ) = ( E ` i ) ) |