| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c |  |-  C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | 
						
							| 2 |  | clwlkclwwlkf.a |  |-  A = ( 1st ` U ) | 
						
							| 3 |  | clwlkclwwlkf.b |  |-  B = ( 2nd ` U ) | 
						
							| 4 |  | fveq2 |  |-  ( w = U -> ( 1st ` w ) = ( 1st ` U ) ) | 
						
							| 5 | 4 2 | eqtr4di |  |-  ( w = U -> ( 1st ` w ) = A ) | 
						
							| 6 | 5 | fveq2d |  |-  ( w = U -> ( # ` ( 1st ` w ) ) = ( # ` A ) ) | 
						
							| 7 | 6 | breq2d |  |-  ( w = U -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` A ) ) ) | 
						
							| 8 | 7 1 | elrab2 |  |-  ( U e. C <-> ( U e. ( ClWalks ` G ) /\ 1 <_ ( # ` A ) ) ) | 
						
							| 9 |  | clwlkwlk |  |-  ( U e. ( ClWalks ` G ) -> U e. ( Walks ` G ) ) | 
						
							| 10 |  | wlkop |  |-  ( U e. ( Walks ` G ) -> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) | 
						
							| 11 | 2 3 | opeq12i |  |-  <. A , B >. = <. ( 1st ` U ) , ( 2nd ` U ) >. | 
						
							| 12 | 11 | eqeq2i |  |-  ( U = <. A , B >. <-> U = <. ( 1st ` U ) , ( 2nd ` U ) >. ) | 
						
							| 13 |  | eleq1 |  |-  ( U = <. A , B >. -> ( U e. ( ClWalks ` G ) <-> <. A , B >. e. ( ClWalks ` G ) ) ) | 
						
							| 14 |  | df-br |  |-  ( A ( ClWalks ` G ) B <-> <. A , B >. e. ( ClWalks ` G ) ) | 
						
							| 15 |  | isclwlk |  |-  ( A ( ClWalks ` G ) B <-> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) ) | 
						
							| 16 |  | wlkcl |  |-  ( A ( Walks ` G ) B -> ( # ` A ) e. NN0 ) | 
						
							| 17 |  | elnnnn0c |  |-  ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ 1 <_ ( # ` A ) ) ) | 
						
							| 18 | 17 | a1i |  |-  ( A ( Walks ` G ) B -> ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ 1 <_ ( # ` A ) ) ) ) | 
						
							| 19 | 16 18 | mpbirand |  |-  ( A ( Walks ` G ) B -> ( ( # ` A ) e. NN <-> 1 <_ ( # ` A ) ) ) | 
						
							| 20 | 19 | bicomd |  |-  ( A ( Walks ` G ) B -> ( 1 <_ ( # ` A ) <-> ( # ` A ) e. NN ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) -> ( 1 <_ ( # ` A ) <-> ( # ` A ) e. NN ) ) | 
						
							| 22 | 21 | pm5.32i |  |-  ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ 1 <_ ( # ` A ) ) <-> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ ( # ` A ) e. NN ) ) | 
						
							| 23 |  | df-3an |  |-  ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) <-> ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ ( # ` A ) e. NN ) ) | 
						
							| 24 | 22 23 | sylbb2 |  |-  ( ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) /\ 1 <_ ( # ` A ) ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) | 
						
							| 26 | 15 25 | sylbi |  |-  ( A ( ClWalks ` G ) B -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) | 
						
							| 27 | 14 26 | sylbir |  |-  ( <. A , B >. e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) | 
						
							| 28 | 13 27 | biimtrdi |  |-  ( U = <. A , B >. -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) | 
						
							| 29 | 12 28 | sylbir |  |-  ( U = <. ( 1st ` U ) , ( 2nd ` U ) >. -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) | 
						
							| 30 | 10 29 | syl |  |-  ( U e. ( Walks ` G ) -> ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) ) | 
						
							| 31 | 9 30 | mpcom |  |-  ( U e. ( ClWalks ` G ) -> ( 1 <_ ( # ` A ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( U e. ( ClWalks ` G ) /\ 1 <_ ( # ` A ) ) -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) | 
						
							| 33 | 8 32 | sylbi |  |-  ( U e. C -> ( A ( Walks ` G ) B /\ ( B ` 0 ) = ( B ` ( # ` A ) ) /\ ( # ` A ) e. NN ) ) |