Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|- C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
2 |
|
simp3 |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) |
3 |
|
wrdlenccats1lenm1 |
|- ( W e. Word ( Vtx ` G ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) = ( # ` W ) ) |
4 |
3
|
eqcomd |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
5 |
4
|
breq2d |
|- ( W e. Word ( Vtx ` G ) -> ( 1 <_ ( # ` W ) <-> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) ) |
6 |
5
|
biimpa |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
7 |
6
|
3adant3 |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
8 |
|
df-br |
|- ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) <-> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) |
9 |
|
clwlkiswlk |
|- ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> f ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) ) |
10 |
|
wlklenvm1 |
|- ( f ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
11 |
9 10
|
syl |
|- ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
12 |
8 11
|
sylbir |
|- ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) |
14 |
7 13
|
breqtrrd |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> 1 <_ ( # ` f ) ) |
15 |
|
vex |
|- f e. _V |
16 |
|
ovex |
|- ( W ++ <" ( W ` 0 ) "> ) e. _V |
17 |
15 16
|
op1std |
|- ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( 1st ` c ) = f ) |
18 |
17
|
fveq2d |
|- ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( # ` ( 1st ` c ) ) = ( # ` f ) ) |
19 |
18
|
breq2d |
|- ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( 1 <_ ( # ` ( 1st ` c ) ) <-> 1 <_ ( # ` f ) ) ) |
20 |
|
2fveq3 |
|- ( w = c -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` c ) ) ) |
21 |
20
|
breq2d |
|- ( w = c -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` c ) ) ) ) |
22 |
21
|
cbvrabv |
|- { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { c e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` c ) ) } |
23 |
1 22
|
eqtri |
|- C = { c e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` c ) ) } |
24 |
19 23
|
elrab2 |
|- ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. C <-> ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ 1 <_ ( # ` f ) ) ) |
25 |
2 14 24
|
sylanbrc |
|- ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. C ) |