| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1fn | 
							 |-  ( E : dom E -1-1-> R -> E Fn dom E )  | 
						
						
							| 2 | 
							
								
							 | 
							dffn3 | 
							 |-  ( E Fn dom E <-> E : dom E --> ran E )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							 |-  ( E : dom E -1-1-> R -> E : dom E --> ran E )  | 
						
						
							| 4 | 
							
								
							 | 
							lencl | 
							 |-  ( F e. Word dom E -> ( # ` F ) e. NN0 )  | 
						
						
							| 5 | 
							
								
							 | 
							ffn | 
							 |-  ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fnfz0hash | 
							 |-  ( ( ( # ` F ) e. NN0 /\ P Fn ( 0 ... ( # ` F ) ) ) -> ( # ` P ) = ( ( # ` F ) + 1 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							 |-  ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( # ` P ) = ( ( # ` F ) + 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ffz0iswrd | 
							 |-  ( P : ( 0 ... ( # ` F ) ) --> V -> P e. Word V )  | 
						
						
							| 9 | 
							
								
							 | 
							lsw | 
							 |-  ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad4antlr | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) ) | 
						
						
							| 13 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` ( # ` F ) ) = ( P ` 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0cn | 
							 |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC )  | 
						
						
							| 15 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( # ` F ) e. NN0 -> 1 e. CC )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							pncand | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqcomd | 
							 |-  ( ( # ` F ) e. NN0 -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ad4antlr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							fveqeq2d | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							biimpd | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							biimtrid | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantld | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							imp | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) | 
						
						
							| 24 | 
							
								10 12 23
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` 0 ) ) | 
						
						
							| 25 | 
							
								
							 | 
							nn0z | 
							 |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ )  | 
						
						
							| 26 | 
							
								
							 | 
							peano2zm | 
							 |-  ( ( # ` F ) e. ZZ -> ( ( # ` F ) - 1 ) e. ZZ )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) e. ZZ )  | 
						
						
							| 28 | 
							
								
							 | 
							nn0re | 
							 |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							lem1d | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) <_ ( # ` F ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eluz2 | 
							 |-  ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) <-> ( ( ( # ` F ) - 1 ) e. ZZ /\ ( # ` F ) e. ZZ /\ ( ( # ` F ) - 1 ) <_ ( # ` F ) ) )  | 
						
						
							| 31 | 
							
								27 25 29 30
							 | 
							syl3anbrc | 
							 |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad4antlr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fzoss2 | 
							 |-  ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							ssralv | 
							 |-  ( ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
						
							| 35 | 
							
								32 33 34
							 | 
							3syl | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> E : dom E --> ran E )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> E : dom E --> ran E )  | 
						
						
							| 38 | 
							
								
							 | 
							wrdf | 
							 |-  ( F e. Word dom E -> F : ( 0 ..^ ( # ` F ) ) --> dom E )  | 
						
						
							| 39 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E )  | 
						
						
							| 40 | 
							
								
							 | 
							fzossrbm1 | 
							 |-  ( ( # ` F ) e. ZZ -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 41 | 
							
								25 40
							 | 
							syl | 
							 |-  ( ( # ` F ) e. NN0 -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							 |-  ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							sselda | 
							 |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							ffvelcdmd | 
							 |-  ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E )  | 
						
						
							| 45 | 
							
								44
							 | 
							exp31 | 
							 |-  ( F : ( 0 ..^ ( # ` F ) ) --> dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) )  | 
						
						
							| 46 | 
							
								38 45
							 | 
							syl | 
							 |-  ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							 |-  ( ( P e. Word V /\ F e. Word dom E ) -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							imp | 
							 |-  ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E )  | 
						
						
							| 51 | 
							
								37 50
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( E ` ( F ` i ) ) e. ran E )  | 
						
						
							| 52 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) | 
						
						
							| 53 | 
							
								52
							 | 
							biimpi | 
							 |-  ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) | 
						
						
							| 54 | 
							
								53
							 | 
							eleq1d | 
							 |-  ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( E ` ( F ` i ) ) e. ran E ) ) | 
						
						
							| 55 | 
							
								51 54
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
						
							| 56 | 
							
								55
							 | 
							ralimdva | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
						
							| 57 | 
							
								35 56
							 | 
							syldc | 
							 |-  ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							 |-  ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
						
							| 59 | 
							
								58
							 | 
							impcom | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) | 
						
						
							| 60 | 
							
								
							 | 
							breq2 | 
							 |-  ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantl | 
							 |-  ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ( # ` F ) e. NN0 -> 2 e. RR )  | 
						
						
							| 64 | 
							
								
							 | 
							1red | 
							 |-  ( ( # ` F ) e. NN0 -> 1 e. RR )  | 
						
						
							| 65 | 
							
								63 64 28
							 | 
							lesubaddd | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) <-> 2 <_ ( ( # ` F ) + 1 ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							2m1e1 | 
							 |-  ( 2 - 1 ) = 1  | 
						
						
							| 67 | 
							
								66
							 | 
							breq1i | 
							 |-  ( ( 2 - 1 ) <_ ( # ` F ) <-> 1 <_ ( # ` F ) )  | 
						
						
							| 68 | 
							
								
							 | 
							elnnnn0c | 
							 |-  ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							simplbi2 | 
							 |-  ( ( # ` F ) e. NN0 -> ( 1 <_ ( # ` F ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							biimtrid | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 71 | 
							
								65 70
							 | 
							sylbird | 
							 |-  ( ( # ` F ) e. NN0 -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							 |-  ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							 |-  ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 74 | 
							
								61 73
							 | 
							sylbid | 
							 |-  ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							imp | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. NN )  | 
						
						
							| 77 | 
							
								
							 | 
							lbfzo0 | 
							 |-  ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN )  | 
						
						
							| 78 | 
							
								76 77
							 | 
							sylibr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> 0 e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							fzoend | 
							 |-  ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							syl | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( i = ( ( # ` F ) - 1 ) -> ( E ` ( F ` i ) ) = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = ( ( # ` F ) - 1 ) -> ( P ` i ) = ( P ` ( ( # ` F ) - 1 ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( i = ( ( # ` F ) - 1 ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							preq12d | 
							 |-  ( i = ( ( # ` F ) - 1 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) | 
						
						
							| 85 | 
							
								81 84
							 | 
							eqeq12d | 
							 |-  ( i = ( ( # ` F ) - 1 ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) | 
						
						
							| 86 | 
							
								85
							 | 
							adantl | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i = ( ( # ` F ) - 1 ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) | 
						
						
							| 87 | 
							
								80 86
							 | 
							rspcdv | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) | 
						
						
							| 88 | 
							
								14 15
							 | 
							npcand | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ad4antlr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) = ( P ` ( # ` F ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							preq2d | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) | 
						
						
							| 92 | 
							
								91
							 | 
							eqeq2d | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) ) | 
						
						
							| 93 | 
							
								38
							 | 
							ad4antlr | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E )  | 
						
						
							| 94 | 
							
								71
							 | 
							com12 | 
							 |-  ( 2 <_ ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) )  | 
						
						
							| 95 | 
							
								60 94
							 | 
							biimtrdi | 
							 |-  ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							com3r | 
							 |-  ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							adantl | 
							 |-  ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							imp31 | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN )  | 
						
						
							| 99 | 
							
								98 77
							 | 
							sylibr | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 100 | 
							
								99 79
							 | 
							syl | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) )  | 
						
						
							| 101 | 
							
								93 100
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E )  | 
						
						
							| 103 | 
							
								36 102
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E )  | 
						
						
							| 104 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) | 
						
						
							| 105 | 
							
								104
							 | 
							biimpi | 
							 |-  ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) | 
						
						
							| 106 | 
							
								105
							 | 
							eleq1d | 
							 |-  ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E ) ) | 
						
						
							| 107 | 
							
								103 106
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 108 | 
							
								92 107
							 | 
							sylbid | 
							 |-  ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 109 | 
							
								87 108
							 | 
							syldc | 
							 |-  ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 110 | 
							
								109
							 | 
							adantr | 
							 |-  ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 111 | 
							
								110
							 | 
							impcom | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) | 
						
						
							| 112 | 
							
								
							 | 
							preq2 | 
							 |-  ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) | 
						
						
							| 113 | 
							
								112
							 | 
							eleq1d | 
							 |-  ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							 |-  ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 115 | 
							
								114
							 | 
							adantl | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) | 
						
						
							| 116 | 
							
								111 115
							 | 
							mpbird | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) | 
						
						
							| 117 | 
							
								24 59 116
							 | 
							3jca | 
							 |-  ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
						
							| 118 | 
							
								117
							 | 
							exp41 | 
							 |-  ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 119 | 
							
								118
							 | 
							exp41 | 
							 |-  ( P e. Word V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) | 
						
						
							| 120 | 
							
								8 119
							 | 
							syl | 
							 |-  ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) | 
						
						
							| 121 | 
							
								120
							 | 
							com13 | 
							 |-  ( ( # ` F ) e. NN0 -> ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) | 
						
						
							| 122 | 
							
								4 121
							 | 
							mpcom | 
							 |-  ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) | 
						
						
							| 123 | 
							
								122
							 | 
							imp | 
							 |-  ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
						
							| 124 | 
							
								7 123
							 | 
							mpd | 
							 |-  ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 125 | 
							
								124
							 | 
							expcom | 
							 |-  ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
						
							| 126 | 
							
								125
							 | 
							com14 | 
							 |-  ( E : dom E --> ran E -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
						
							| 127 | 
							
								126
							 | 
							imp | 
							 |-  ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 128 | 
							
								127
							 | 
							impcomd | 
							 |-  ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 129 | 
							
								3 128
							 | 
							sylan | 
							 |-  ( ( E : dom E -1-1-> R /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 130 | 
							
								129
							 | 
							3imp | 
							 |-  ( ( ( E : dom E -1-1-> R /\ F e. Word dom E ) /\ ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |