Step |
Hyp |
Ref |
Expression |
1 |
|
f1fn |
|- ( E : dom E -1-1-> R -> E Fn dom E ) |
2 |
|
dffn3 |
|- ( E Fn dom E <-> E : dom E --> ran E ) |
3 |
1 2
|
sylib |
|- ( E : dom E -1-1-> R -> E : dom E --> ran E ) |
4 |
|
lencl |
|- ( F e. Word dom E -> ( # ` F ) e. NN0 ) |
5 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) ) |
6 |
|
fnfz0hash |
|- ( ( ( # ` F ) e. NN0 /\ P Fn ( 0 ... ( # ` F ) ) ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
8 |
|
ffz0iswrd |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. Word V ) |
9 |
|
lsw |
|- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
10 |
9
|
ad6antr |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
11 |
|
fvoveq1 |
|- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
12 |
11
|
ad4antlr |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
13 |
|
eqcom |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
14 |
|
nn0cn |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) |
15 |
|
1cnd |
|- ( ( # ` F ) e. NN0 -> 1 e. CC ) |
16 |
14 15
|
pncand |
|- ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
17 |
16
|
eqcomd |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
18 |
17
|
ad4antlr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
19 |
18
|
fveqeq2d |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
20 |
19
|
biimpd |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
21 |
13 20
|
syl5bi |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
22 |
21
|
adantld |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) ) |
23 |
22
|
imp |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( P ` ( ( ( # ` F ) + 1 ) - 1 ) ) = ( P ` 0 ) ) |
24 |
10 12 23
|
3eqtrd |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( lastS ` P ) = ( P ` 0 ) ) |
25 |
|
nn0z |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
26 |
|
peano2zm |
|- ( ( # ` F ) e. ZZ -> ( ( # ` F ) - 1 ) e. ZZ ) |
27 |
25 26
|
syl |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) e. ZZ ) |
28 |
|
nn0re |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. RR ) |
29 |
28
|
lem1d |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) - 1 ) <_ ( # ` F ) ) |
30 |
|
eluz2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) <-> ( ( ( # ` F ) - 1 ) e. ZZ /\ ( # ` F ) e. ZZ /\ ( ( # ` F ) - 1 ) <_ ( # ` F ) ) ) |
31 |
27 25 29 30
|
syl3anbrc |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
32 |
31
|
ad4antlr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) ) |
33 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( ( # ` F ) - 1 ) ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
34 |
|
ssralv |
|- ( ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
35 |
32 33 34
|
3syl |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
36 |
|
simpr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> E : dom E --> ran E ) |
37 |
36
|
adantr |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> E : dom E --> ran E ) |
38 |
|
wrdf |
|- ( F e. Word dom E -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
39 |
|
simpll |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
40 |
|
fzossrbm1 |
|- ( ( # ` F ) e. ZZ -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
41 |
25 40
|
syl |
|- ( ( # ` F ) e. NN0 -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
42 |
41
|
adantl |
|- ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) -> ( 0 ..^ ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
43 |
42
|
sselda |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
44 |
39 43
|
ffvelrnd |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) --> dom E /\ ( # ` F ) e. NN0 ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E ) |
45 |
44
|
exp31 |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
46 |
38 45
|
syl |
|- ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
47 |
46
|
adantl |
|- ( ( P e. Word V /\ F e. Word dom E ) -> ( ( # ` F ) e. NN0 -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) ) |
48 |
47
|
imp |
|- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) |
49 |
48
|
ad3antrrr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) -> ( F ` i ) e. dom E ) ) |
50 |
49
|
imp |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( F ` i ) e. dom E ) |
51 |
37 50
|
ffvelrnd |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( E ` ( F ` i ) ) e. ran E ) |
52 |
|
eqcom |
|- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) |
53 |
52
|
biimpi |
|- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( E ` ( F ` i ) ) ) |
54 |
53
|
eleq1d |
|- ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( E ` ( F ` i ) ) e. ran E ) ) |
55 |
51 54
|
syl5ibrcom |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
56 |
55
|
ralimdva |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
57 |
35 56
|
syldc |
|- ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
58 |
57
|
adantr |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
59 |
58
|
impcom |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
60 |
|
breq2 |
|- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
61 |
60
|
adantl |
|- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
62 |
|
2re |
|- 2 e. RR |
63 |
62
|
a1i |
|- ( ( # ` F ) e. NN0 -> 2 e. RR ) |
64 |
|
1red |
|- ( ( # ` F ) e. NN0 -> 1 e. RR ) |
65 |
63 64 28
|
lesubaddd |
|- ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) <-> 2 <_ ( ( # ` F ) + 1 ) ) ) |
66 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
67 |
66
|
breq1i |
|- ( ( 2 - 1 ) <_ ( # ` F ) <-> 1 <_ ( # ` F ) ) |
68 |
|
elnnnn0c |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) |
69 |
68
|
simplbi2 |
|- ( ( # ` F ) e. NN0 -> ( 1 <_ ( # ` F ) -> ( # ` F ) e. NN ) ) |
70 |
67 69
|
syl5bi |
|- ( ( # ` F ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` F ) -> ( # ` F ) e. NN ) ) |
71 |
65 70
|
sylbird |
|- ( ( # ` F ) e. NN0 -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
72 |
71
|
adantl |
|- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
73 |
72
|
adantr |
|- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( ( # ` F ) + 1 ) -> ( # ` F ) e. NN ) ) |
74 |
61 73
|
sylbid |
|- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) |
75 |
74
|
imp |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN ) |
76 |
75
|
adantr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( # ` F ) e. NN ) |
77 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
78 |
76 77
|
sylibr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
79 |
|
fzoend |
|- ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
80 |
78 79
|
syl |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
81 |
|
2fveq3 |
|- ( i = ( ( # ` F ) - 1 ) -> ( E ` ( F ` i ) ) = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
82 |
|
fveq2 |
|- ( i = ( ( # ` F ) - 1 ) -> ( P ` i ) = ( P ` ( ( # ` F ) - 1 ) ) ) |
83 |
|
fvoveq1 |
|- ( i = ( ( # ` F ) - 1 ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) ) |
84 |
82 83
|
preq12d |
|- ( i = ( ( # ` F ) - 1 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) |
85 |
81 84
|
eqeq12d |
|- ( i = ( ( # ` F ) - 1 ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
86 |
85
|
adantl |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ i = ( ( # ` F ) - 1 ) ) -> ( ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
87 |
80 86
|
rspcdv |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } ) ) |
88 |
14 15
|
npcand |
|- ( ( # ` F ) e. NN0 -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
89 |
88
|
ad4antlr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
90 |
89
|
fveq2d |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) = ( P ` ( # ` F ) ) ) |
91 |
90
|
preq2d |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) |
92 |
91
|
eqeq2d |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) ) |
93 |
38
|
ad4antlr |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> F : ( 0 ..^ ( # ` F ) ) --> dom E ) |
94 |
71
|
com12 |
|- ( 2 <_ ( ( # ` F ) + 1 ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) ) |
95 |
60 94
|
syl6bi |
|- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( ( # ` F ) e. NN0 -> ( # ` F ) e. NN ) ) ) |
96 |
95
|
com3r |
|- ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) ) |
97 |
96
|
adantl |
|- ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( # ` F ) e. NN ) ) ) |
98 |
97
|
imp31 |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( # ` F ) e. NN ) |
99 |
98 77
|
sylibr |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
100 |
99 79
|
syl |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
101 |
93 100
|
ffvelrnd |
|- ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E ) |
102 |
101
|
adantr |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( F ` ( ( # ` F ) - 1 ) ) e. dom E ) |
103 |
36 102
|
ffvelrnd |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E ) |
104 |
|
eqcom |
|- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
105 |
104
|
biimpi |
|- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } = ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) ) |
106 |
105
|
eleq1d |
|- ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E <-> ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) e. ran E ) ) |
107 |
103 106
|
syl5ibrcom |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
108 |
92 107
|
sylbid |
|- ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> ( ( E ` ( F ` ( ( # ` F ) - 1 ) ) ) = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( ( ( # ` F ) - 1 ) + 1 ) ) } -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
109 |
87 108
|
syldc |
|- ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
110 |
109
|
adantr |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
111 |
110
|
impcom |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) |
112 |
|
preq2 |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } ) |
113 |
112
|
eleq1d |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
114 |
113
|
adantl |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
115 |
114
|
adantl |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` ( # ` F ) ) } e. ran E ) ) |
116 |
111 115
|
mpbird |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) |
117 |
24 59 116
|
3jca |
|- ( ( ( ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) /\ 2 <_ ( # ` P ) ) /\ E : dom E --> ran E ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
118 |
117
|
exp41 |
|- ( ( ( ( P e. Word V /\ F e. Word dom E ) /\ ( # ` F ) e. NN0 ) /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
119 |
118
|
exp41 |
|- ( P e. Word V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
120 |
8 119
|
syl |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( ( # ` F ) e. NN0 -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
121 |
120
|
com13 |
|- ( ( # ` F ) e. NN0 -> ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) ) |
122 |
4 121
|
mpcom |
|- ( F e. Word dom E -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) ) |
123 |
122
|
imp |
|- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
124 |
7 123
|
mpd |
|- ( ( F e. Word dom E /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
125 |
124
|
expcom |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( E : dom E --> ran E -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
126 |
125
|
com14 |
|- ( E : dom E --> ran E -> ( F e. Word dom E -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
127 |
126
|
imp |
|- ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( 2 <_ ( # ` P ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
128 |
127
|
impcomd |
|- ( ( E : dom E --> ran E /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
129 |
3 128
|
sylan |
|- ( ( E : dom E -1-1-> R /\ F e. Word dom E ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) -> ( ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
130 |
129
|
3imp |
|- ( ( ( E : dom E -1-1-> R /\ F e. Word dom E ) /\ ( P : ( 0 ... ( # ` F ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` F ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` F ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |