| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
| 2 |
|
nn0cn |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. CC ) |
| 3 |
|
peano2cnm |
|- ( ( # ` P ) e. CC -> ( ( # ` P ) - 1 ) e. CC ) |
| 4 |
3
|
subid1d |
|- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( # ` P ) - 1 ) ) |
| 5 |
4
|
oveq1d |
|- ( ( # ` P ) e. CC -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( ( # ` P ) - 1 ) - 1 ) ) |
| 6 |
|
sub1m1 |
|- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 7 |
5 6
|
eqtrd |
|- ( ( # ` P ) e. CC -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 8 |
1 2 7
|
3syl |
|- ( P e. Word V -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 9 |
8
|
adantr |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
| 10 |
9
|
oveq2d |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) = ( 0 ..^ ( ( # ` P ) - 2 ) ) ) |
| 11 |
10
|
raleqdv |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 12 |
11
|
biimpcd |
|- ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 13 |
12
|
adantr |
|- ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 14 |
13
|
adantl |
|- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 15 |
14
|
impcom |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 16 |
|
lsw |
|- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
| 17 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 18 |
17
|
a1i |
|- ( P e. Word V -> ( 2 - 1 ) = 1 ) |
| 19 |
18
|
eqcomd |
|- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
| 20 |
19
|
oveq2d |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
| 21 |
1 2
|
syl |
|- ( P e. Word V -> ( # ` P ) e. CC ) |
| 22 |
|
2cnd |
|- ( P e. Word V -> 2 e. CC ) |
| 23 |
|
1cnd |
|- ( P e. Word V -> 1 e. CC ) |
| 24 |
21 22 23
|
subsubd |
|- ( P e. Word V -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 25 |
20 24
|
eqtrd |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 26 |
25
|
fveq2d |
|- ( P e. Word V -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 27 |
16 26
|
eqtrd |
|- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 28 |
27
|
adantr |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 30 |
|
eqeq1 |
|- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) <-> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
| 31 |
30
|
adantl |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( ( lastS ` P ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) <-> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
| 32 |
29 31
|
mpbid |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 33 |
32
|
preq2d |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 34 |
33
|
eleq1d |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 35 |
34
|
biimpd |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 36 |
35
|
ex |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 37 |
36
|
com13 |
|- ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E -> ( ( lastS ` P ) = ( P ` 0 ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 38 |
37
|
adantl |
|- ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 39 |
38
|
impcom |
|- ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 40 |
39
|
impcom |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) |
| 41 |
|
ovexd |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( ( # ` P ) - 2 ) e. _V ) |
| 42 |
|
fveq2 |
|- ( i = ( ( # ` P ) - 2 ) -> ( P ` i ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
| 43 |
|
fvoveq1 |
|- ( i = ( ( # ` P ) - 2 ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 44 |
42 43
|
preq12d |
|- ( i = ( ( # ` P ) - 2 ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
| 45 |
44
|
eleq1d |
|- ( i = ( ( # ` P ) - 2 ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) |
| 46 |
45
|
ralunsn |
|- ( ( ( # ` P ) - 2 ) e. _V -> ( A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 47 |
41 46
|
syl |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 2 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } e. ran E ) ) ) |
| 48 |
15 40 47
|
mpbir2and |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 49 |
|
1e2m1 |
|- 1 = ( 2 - 1 ) |
| 50 |
49
|
a1i |
|- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
| 51 |
50
|
oveq2d |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
| 52 |
51 24
|
eqtrd |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
| 53 |
52
|
oveq2d |
|- ( P e. Word V -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 54 |
53
|
adantr |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
| 55 |
|
nn0re |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
| 56 |
|
2re |
|- 2 e. RR |
| 57 |
56
|
a1i |
|- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 58 |
55 57
|
subge0d |
|- ( ( # ` P ) e. NN0 -> ( 0 <_ ( ( # ` P ) - 2 ) <-> 2 <_ ( # ` P ) ) ) |
| 59 |
58
|
biimprd |
|- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 60 |
|
nn0z |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
| 61 |
|
2z |
|- 2 e. ZZ |
| 62 |
61
|
a1i |
|- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
| 63 |
60 62
|
zsubcld |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 64 |
59 63
|
jctild |
|- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) ) |
| 65 |
1 64
|
syl |
|- ( P e. Word V -> ( 2 <_ ( # ` P ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) ) |
| 66 |
65
|
imp |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 67 |
|
elnn0z |
|- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 68 |
66 67
|
sylibr |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN0 ) |
| 69 |
|
elnn0uz |
|- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) ) |
| 70 |
68 69
|
sylib |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) ) |
| 71 |
|
fzosplitsn |
|- ( ( ( # ` P ) - 2 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 72 |
70 71
|
syl |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( ( # ` P ) - 2 ) + 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 73 |
54 72
|
eqtrd |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 74 |
73
|
adantr |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( ( 0 ..^ ( ( # ` P ) - 2 ) ) u. { ( ( # ` P ) - 2 ) } ) ) |
| 75 |
48 74
|
raleqtrrdv |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) |
| 76 |
75
|
ex |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |