Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlklem2.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
2 |
|
fveq2 |
|- ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( F ` ( ( # ` P ) - 2 ) ) ) |
3 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
4 |
1
|
clwlkclwwlklem2fv2 |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
5 |
3 4
|
sylan |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
6 |
2 5
|
sylan9eqr |
|- ( ( ( P e. Word V /\ 2 <_ ( # ` P ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
7 |
6
|
ex |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
8 |
7
|
3adant1 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
9 |
8
|
ad2antrr |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
10 |
9
|
impcom |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( F ` I ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
11 |
10
|
fveq2d |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) ) |
12 |
|
f1f1orn |
|- ( E : dom E -1-1-> R -> E : dom E -1-1-onto-> ran E ) |
13 |
12
|
3ad2ant1 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) |
14 |
13
|
ad2antrr |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> E : dom E -1-1-onto-> ran E ) |
15 |
|
lsw |
|- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
16 |
15
|
eqeq1d |
|- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) <-> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) ) |
17 |
|
nn0cn |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. CC ) |
18 |
|
id |
|- ( ( # ` P ) e. CC -> ( # ` P ) e. CC ) |
19 |
|
2cnd |
|- ( ( # ` P ) e. CC -> 2 e. CC ) |
20 |
|
1cnd |
|- ( ( # ` P ) e. CC -> 1 e. CC ) |
21 |
18 19 20
|
subsubd |
|- ( ( # ` P ) e. CC -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
22 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
23 |
22
|
a1i |
|- ( ( # ` P ) e. CC -> ( 2 - 1 ) = 1 ) |
24 |
23
|
oveq2d |
|- ( ( # ` P ) e. CC -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( # ` P ) - 1 ) ) |
25 |
21 24
|
eqtr3d |
|- ( ( # ` P ) e. CC -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
26 |
3 17 25
|
3syl |
|- ( P e. Word V -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
27 |
26
|
adantr |
|- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( ( ( # ` P ) - 2 ) + 1 ) = ( ( # ` P ) - 1 ) ) |
28 |
27
|
fveq2d |
|- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
29 |
|
eqeq2 |
|- ( ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
30 |
29
|
eqcoms |
|- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
31 |
30
|
adantl |
|- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) <-> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` ( ( # ` P ) - 1 ) ) ) ) |
32 |
28 31
|
mpbird |
|- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
33 |
32
|
ex |
|- ( P e. Word V -> ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
34 |
16 33
|
sylbid |
|- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
35 |
34
|
3ad2ant2 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
36 |
35
|
com12 |
|- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
37 |
36
|
adantr |
|- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) ) |
38 |
37
|
impcom |
|- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
39 |
38
|
adantr |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) = ( P ` 0 ) ) |
40 |
39
|
preq2d |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
41 |
|
fveq2 |
|- ( I = ( ( # ` P ) - 2 ) -> ( P ` I ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
42 |
|
fvoveq1 |
|- ( I = ( ( # ` P ) - 2 ) -> ( P ` ( I + 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
43 |
41 42
|
preq12d |
|- ( I = ( ( # ` P ) - 2 ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
44 |
43
|
eqeq1d |
|- ( I = ( ( # ` P ) - 2 ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
45 |
44
|
adantl |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
46 |
40 45
|
mpbird |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
47 |
46
|
eleq1d |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E <-> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
48 |
47
|
biimpd |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ I = ( ( # ` P ) - 2 ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
49 |
48
|
impancom |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) |
50 |
49
|
impcom |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) |
51 |
|
f1ocnvfv2 |
|- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
52 |
14 50 51
|
syl2an2 |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
53 |
|
eqcom |
|- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) <-> ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
54 |
53
|
biimpi |
|- ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
55 |
|
1e2m1 |
|- 1 = ( 2 - 1 ) |
56 |
55
|
a1i |
|- ( P e. Word V -> 1 = ( 2 - 1 ) ) |
57 |
56
|
oveq2d |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( # ` P ) - ( 2 - 1 ) ) ) |
58 |
3 17
|
syl |
|- ( P e. Word V -> ( # ` P ) e. CC ) |
59 |
|
2cnd |
|- ( P e. Word V -> 2 e. CC ) |
60 |
|
1cnd |
|- ( P e. Word V -> 1 e. CC ) |
61 |
58 59 60
|
subsubd |
|- ( P e. Word V -> ( ( # ` P ) - ( 2 - 1 ) ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
62 |
57 61
|
eqtrd |
|- ( P e. Word V -> ( ( # ` P ) - 1 ) = ( ( ( # ` P ) - 2 ) + 1 ) ) |
63 |
62
|
fveq2d |
|- ( P e. Word V -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
64 |
54 63
|
sylan9eqr |
|- ( ( P e. Word V /\ ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
65 |
64
|
ex |
|- ( P e. Word V -> ( ( P ` ( ( # ` P ) - 1 ) ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
66 |
16 65
|
sylbid |
|- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) ) |
67 |
66
|
imp |
|- ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) -> ( P ` 0 ) = ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) ) |
68 |
67
|
preq2d |
|- ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
69 |
68
|
adantr |
|- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
70 |
43
|
adantl |
|- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` ( ( ( # ` P ) - 2 ) + 1 ) ) } ) |
71 |
69 70
|
eqtr4d |
|- ( ( ( P e. Word V /\ ( lastS ` P ) = ( P ` 0 ) ) /\ I = ( ( # ` P ) - 2 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
72 |
71
|
exp31 |
|- ( P e. Word V -> ( ( lastS ` P ) = ( P ` 0 ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
73 |
72
|
3ad2ant2 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( lastS ` P ) = ( P ` 0 ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
74 |
73
|
com12 |
|- ( ( lastS ` P ) = ( P ` 0 ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
75 |
74
|
adantr |
|- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
76 |
75
|
impcom |
|- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
77 |
76
|
adantr |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( I = ( ( # ` P ) - 2 ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
78 |
77
|
impcom |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
79 |
11 52 78
|
3eqtrd |
|- ( ( I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
80 |
|
simpll |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( # ` P ) e. NN0 ) |
81 |
|
oveq1 |
|- ( ( # ` P ) = 2 -> ( ( # ` P ) - 1 ) = ( 2 - 1 ) ) |
82 |
81 22
|
eqtrdi |
|- ( ( # ` P ) = 2 -> ( ( # ` P ) - 1 ) = 1 ) |
83 |
82
|
oveq2d |
|- ( ( # ` P ) = 2 -> ( 0 ..^ ( ( # ` P ) - 1 ) ) = ( 0 ..^ 1 ) ) |
84 |
83
|
eleq2d |
|- ( ( # ` P ) = 2 -> ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> I e. ( 0 ..^ 1 ) ) ) |
85 |
|
oveq1 |
|- ( ( # ` P ) = 2 -> ( ( # ` P ) - 2 ) = ( 2 - 2 ) ) |
86 |
|
2cn |
|- 2 e. CC |
87 |
86
|
subidi |
|- ( 2 - 2 ) = 0 |
88 |
85 87
|
eqtrdi |
|- ( ( # ` P ) = 2 -> ( ( # ` P ) - 2 ) = 0 ) |
89 |
88
|
eqeq2d |
|- ( ( # ` P ) = 2 -> ( I = ( ( # ` P ) - 2 ) <-> I = 0 ) ) |
90 |
89
|
notbid |
|- ( ( # ` P ) = 2 -> ( -. I = ( ( # ` P ) - 2 ) <-> -. I = 0 ) ) |
91 |
84 90
|
anbi12d |
|- ( ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) <-> ( I e. ( 0 ..^ 1 ) /\ -. I = 0 ) ) ) |
92 |
|
elsni |
|- ( I e. { 0 } -> I = 0 ) |
93 |
92
|
pm2.24d |
|- ( I e. { 0 } -> ( -. I = 0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
94 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
95 |
93 94
|
eleq2s |
|- ( I e. ( 0 ..^ 1 ) -> ( -. I = 0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
96 |
95
|
imp |
|- ( ( I e. ( 0 ..^ 1 ) /\ -. I = 0 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
97 |
91 96
|
syl6bi |
|- ( ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
98 |
97
|
adantld |
|- ( ( # ` P ) = 2 -> ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
99 |
|
df-ne |
|- ( ( # ` P ) =/= 2 <-> -. ( # ` P ) = 2 ) |
100 |
|
2re |
|- 2 e. RR |
101 |
100
|
a1i |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR ) |
102 |
|
nn0re |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
103 |
102
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR ) |
104 |
|
simpr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) |
105 |
101 103 104
|
leltned |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( 2 < ( # ` P ) <-> ( # ` P ) =/= 2 ) ) |
106 |
|
elfzo0 |
|- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( I e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ I < ( ( # ` P ) - 1 ) ) ) |
107 |
|
simp-4l |
|- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> I e. NN0 ) |
108 |
|
nn0z |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
109 |
|
2z |
|- 2 e. ZZ |
110 |
109
|
a1i |
|- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
111 |
108 110
|
zsubcld |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
112 |
111
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
113 |
100
|
a1i |
|- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
114 |
113 102
|
posdifd |
|- ( ( # ` P ) e. NN0 -> ( 2 < ( # ` P ) <-> 0 < ( ( # ` P ) - 2 ) ) ) |
115 |
114
|
biimpa |
|- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> 0 < ( ( # ` P ) - 2 ) ) |
116 |
|
elnnz |
|- ( ( ( # ` P ) - 2 ) e. NN <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 < ( ( # ` P ) - 2 ) ) ) |
117 |
112 115 116
|
sylanbrc |
|- ( ( ( # ` P ) e. NN0 /\ 2 < ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN ) |
118 |
117
|
ad5ant24 |
|- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> ( ( # ` P ) - 2 ) e. NN ) |
119 |
|
nn0z |
|- ( I e. NN0 -> I e. ZZ ) |
120 |
|
peano2zm |
|- ( ( # ` P ) e. ZZ -> ( ( # ` P ) - 1 ) e. ZZ ) |
121 |
108 120
|
syl |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ZZ ) |
122 |
|
zltlem1 |
|- ( ( I e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
123 |
119 121 122
|
syl2an |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( ( # ` P ) - 1 ) - 1 ) ) ) |
124 |
17
|
adantl |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( # ` P ) e. CC ) |
125 |
|
1cnd |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> 1 e. CC ) |
126 |
124 125 125
|
subsub4d |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - ( 1 + 1 ) ) ) |
127 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
128 |
127
|
a1i |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( 1 + 1 ) = 2 ) |
129 |
128
|
oveq2d |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( # ` P ) - ( 1 + 1 ) ) = ( ( # ` P ) - 2 ) ) |
130 |
126 129
|
eqtrd |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` P ) - 1 ) - 1 ) = ( ( # ` P ) - 2 ) ) |
131 |
130
|
breq2d |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I <_ ( ( ( # ` P ) - 1 ) - 1 ) <-> I <_ ( ( # ` P ) - 2 ) ) ) |
132 |
123 131
|
bitrd |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) <-> I <_ ( ( # ` P ) - 2 ) ) ) |
133 |
|
necom |
|- ( ( ( # ` P ) - 2 ) =/= I <-> I =/= ( ( # ` P ) - 2 ) ) |
134 |
|
df-ne |
|- ( I =/= ( ( # ` P ) - 2 ) <-> -. I = ( ( # ` P ) - 2 ) ) |
135 |
133 134
|
bitr2i |
|- ( -. I = ( ( # ` P ) - 2 ) <-> ( ( # ` P ) - 2 ) =/= I ) |
136 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
137 |
136
|
ad2antrr |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> I e. RR ) |
138 |
102 113
|
resubcld |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR ) |
139 |
138
|
ad2antlr |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. RR ) |
140 |
|
simpr |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> I <_ ( ( # ` P ) - 2 ) ) |
141 |
|
leltne |
|- ( ( I e. RR /\ ( ( # ` P ) - 2 ) e. RR /\ I <_ ( ( # ` P ) - 2 ) ) -> ( I < ( ( # ` P ) - 2 ) <-> ( ( # ` P ) - 2 ) =/= I ) ) |
142 |
141
|
bicomd |
|- ( ( I e. RR /\ ( ( # ` P ) - 2 ) e. RR /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I <-> I < ( ( # ` P ) - 2 ) ) ) |
143 |
137 139 140 142
|
syl3anc |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I <-> I < ( ( # ` P ) - 2 ) ) ) |
144 |
143
|
biimpd |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( ( ( # ` P ) - 2 ) =/= I -> I < ( ( # ` P ) - 2 ) ) ) |
145 |
135 144
|
syl5bi |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ I <_ ( ( # ` P ) - 2 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) |
146 |
145
|
ex |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I <_ ( ( # ` P ) - 2 ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
147 |
132 146
|
sylbid |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( I < ( ( # ` P ) - 1 ) -> ( -. I = ( ( # ` P ) - 2 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
148 |
147
|
com23 |
|- ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) ) |
149 |
148
|
imp |
|- ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) |
150 |
149
|
adantr |
|- ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) -> ( I < ( ( # ` P ) - 1 ) -> I < ( ( # ` P ) - 2 ) ) ) |
151 |
150
|
imp |
|- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> I < ( ( # ` P ) - 2 ) ) |
152 |
107 118 151
|
3jca |
|- ( ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) /\ I < ( ( # ` P ) - 1 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
153 |
152
|
ex |
|- ( ( ( ( I e. NN0 /\ ( # ` P ) e. NN0 ) /\ -. I = ( ( # ` P ) - 2 ) ) /\ 2 < ( # ` P ) ) -> ( I < ( ( # ` P ) - 1 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
154 |
153
|
exp41 |
|- ( I e. NN0 -> ( ( # ` P ) e. NN0 -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( I < ( ( # ` P ) - 1 ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) ) |
155 |
154
|
com25 |
|- ( I e. NN0 -> ( I < ( ( # ` P ) - 1 ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) ) |
156 |
155
|
imp |
|- ( ( I e. NN0 /\ I < ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
157 |
156
|
3adant2 |
|- ( ( I e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ I < ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
158 |
106 157
|
sylbi |
|- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) ) |
159 |
158
|
imp |
|- ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( 2 < ( # ` P ) -> ( ( # ` P ) e. NN0 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
160 |
159
|
com13 |
|- ( ( # ` P ) e. NN0 -> ( 2 < ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
161 |
160
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( 2 < ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
162 |
105 161
|
sylbird |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) =/= 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
163 |
99 162
|
syl5bir |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( -. ( # ` P ) = 2 -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
164 |
163
|
com23 |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( -. ( # ` P ) = 2 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) ) |
165 |
164
|
imp |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( -. ( # ` P ) = 2 -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
166 |
165
|
com12 |
|- ( -. ( # ` P ) = 2 -> ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) ) |
167 |
98 166
|
pm2.61i |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
168 |
|
elfzo0 |
|- ( I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) <-> ( I e. NN0 /\ ( ( # ` P ) - 2 ) e. NN /\ I < ( ( # ` P ) - 2 ) ) ) |
169 |
167 168
|
sylibr |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) |
170 |
80 169
|
jca |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) |
171 |
170
|
exp31 |
|- ( ( # ` P ) e. NN0 -> ( 2 <_ ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
172 |
3 171
|
syl |
|- ( P e. Word V -> ( 2 <_ ( # ` P ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
173 |
172
|
imp |
|- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
174 |
173
|
3adant1 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) /\ -. I = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
175 |
174
|
expd |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
176 |
175
|
com12 |
|- ( I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
177 |
176
|
adantl |
|- ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) ) |
178 |
177
|
impcom |
|- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
179 |
178
|
adantr |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( -. I = ( ( # ` P ) - 2 ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) ) |
180 |
179
|
impcom |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) ) |
181 |
1
|
clwlkclwwlklem2fv1 |
|- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
182 |
180 181
|
syl |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
183 |
182
|
fveq2d |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |
184 |
|
simprr |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) |
185 |
|
f1ocnvfv2 |
|- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
186 |
14 184 185
|
syl2an2 |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
187 |
183 186
|
eqtrd |
|- ( ( -. I = ( ( # ` P ) - 2 ) /\ ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
188 |
79 187
|
pm2.61ian |
|- ( ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) /\ { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E ) -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
189 |
188
|
exp31 |
|- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` I ) , ( P ` ( I + 1 ) ) } e. ran E -> ( E ` ( F ` I ) ) = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) ) |