| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							 |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							breq1 | 
							 |-  ( x = I -> ( x < ( ( # ` P ) - 2 ) <-> I < ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = I -> ( P ` x ) = ( P ` I ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( x = I -> ( P ` ( x + 1 ) ) = ( P ` ( I + 1 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							preq12d | 
							 |-  ( x = I -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( x = I -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) | 
						
						
							| 7 | 
							
								3
							 | 
							preq1d | 
							 |-  ( x = I -> { ( P ` x ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` 0 ) } ) | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							 |-  ( x = I -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) = ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) | 
						
						
							| 9 | 
							
								2 6 8
							 | 
							ifbieq12d | 
							 |-  ( x = I -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = if ( I < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) , ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) ) | 
						
						
							| 10 | 
							
								
							 | 
							elfzolt2 | 
							 |-  ( I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) -> I < ( ( # ` P ) - 2 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> I < ( ( # ` P ) - 2 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							iftrued | 
							 |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> if ( I < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) , ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) | 
						
						
							| 13 | 
							
								9 12
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) /\ x = I ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) | 
						
						
							| 14 | 
							
								
							 | 
							nn0z | 
							 |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ )  | 
						
						
							| 15 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( ( # ` P ) e. NN0 -> 2 e. ZZ )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							zsubcld | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 18 | 
							
								
							 | 
							peano2zm | 
							 |-  ( ( # ` P ) e. ZZ -> ( ( # ` P ) - 1 ) e. ZZ )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							syl | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ZZ )  | 
						
						
							| 20 | 
							
								
							 | 
							1red | 
							 |-  ( ( # ` P ) e. NN0 -> 1 e. RR )  | 
						
						
							| 21 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							 |-  ( ( # ` P ) e. NN0 -> 2 e. RR )  | 
						
						
							| 23 | 
							
								
							 | 
							nn0re | 
							 |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR )  | 
						
						
							| 24 | 
							
								
							 | 
							1le2 | 
							 |-  1 <_ 2  | 
						
						
							| 25 | 
							
								24
							 | 
							a1i | 
							 |-  ( ( # ` P ) e. NN0 -> 1 <_ 2 )  | 
						
						
							| 26 | 
							
								20 22 23 25
							 | 
							lesub2dd | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) <_ ( ( # ` P ) - 1 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eluz2 | 
							 |-  ( ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ /\ ( ( # ` P ) - 2 ) <_ ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 28 | 
							
								17 19 26 27
							 | 
							syl3anbrc | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fzoss2 | 
							 |-  ( ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) -> ( 0 ..^ ( ( # ` P ) - 2 ) ) C_ ( 0 ..^ ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ( # ` P ) e. NN0 -> ( 0 ..^ ( ( # ` P ) - 2 ) ) C_ ( 0 ..^ ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							sselda | 
							 |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) e. _V ) | 
						
						
							| 33 | 
							
								1 13 31 32
							 | 
							fvmptd2 | 
							 |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |