| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							 |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x = ( ( # ` P ) - 2 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn0z | 
							 |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 5 | 
							
								3 4
							 | 
							jctir | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							zsubcl | 
							 |-  ( ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqeltrd | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x e. ZZ )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> x e. ZZ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							zre | 
							 |-  ( x e. ZZ -> x e. RR )  | 
						
						
							| 13 | 
							
								
							 | 
							nn0re | 
							 |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR )  | 
						
						
							| 14 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( # ` P ) e. NN0 -> 2 e. RR )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							resubcld | 
							 |-  ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. RR )  | 
						
						
							| 18 | 
							
								
							 | 
							lttri3 | 
							 |-  ( ( x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) )  | 
						
						
							| 19 | 
							
								12 17 18
							 | 
							syl2anr | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl | 
							 |-  ( ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) -> -. x < ( ( # ` P ) - 2 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							biimtrdi | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ex | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x e. ZZ -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							syld | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							com13 | 
							 |-  ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							pm2.43i | 
							 |-  ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							impcom | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> -. x < ( ( # ` P ) - 2 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							iffalsed | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) | 
						
						
							| 28 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = ( ( # ` P ) - 2 ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantl | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							preq1d | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) | 
						
						
							| 31 | 
							
								30
							 | 
							fveq2d | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) | 
						
						
							| 32 | 
							
								27 31
							 | 
							eqtrd | 
							 |-  ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) | 
						
						
							| 33 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) )  | 
						
						
							| 34 | 
							
								33 6
							 | 
							syl | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ )  | 
						
						
							| 35 | 
							
								13 15
							 | 
							subge0d | 
							 |-  ( ( # ` P ) e. NN0 -> ( 0 <_ ( ( # ` P ) - 2 ) <-> 2 <_ ( # ` P ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							biimpar | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 <_ ( ( # ` P ) - 2 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							elnn0z | 
							 |-  ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) )  | 
						
						
							| 38 | 
							
								34 36 37
							 | 
							sylanbrc | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN0 )  | 
						
						
							| 39 | 
							
								
							 | 
							nn0ge2m1nn | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN )  | 
						
						
							| 40 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 e. RR )  | 
						
						
							| 41 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR )  | 
						
						
							| 42 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR )  | 
						
						
							| 43 | 
							
								
							 | 
							1lt2 | 
							 |-  1 < 2  | 
						
						
							| 44 | 
							
								43
							 | 
							a1i | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 < 2 )  | 
						
						
							| 45 | 
							
								40 41 42 44
							 | 
							ltsub2dd | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							elfzo0 | 
							 |-  ( ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( ( ( # ` P ) - 2 ) e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 47 | 
							
								38 39 45 46
							 | 
							syl3anbrc | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							fvexd | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) e. _V ) | 
						
						
							| 49 | 
							
								1 32 47 48
							 | 
							fvmptd2 | 
							 |-  ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |