| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-> R )  | 
						
						
							| 2 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom E ) | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> f e. Word dom E ) | 
						
						
							| 4 | 
							
								1 3
							 | 
							anim12i | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( E : dom E -1-1-> R /\ f e. Word dom E ) ) | 
						
						
							| 5 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> P : ( 0 ... ( # ` f ) ) --> V ) | 
						
						
							| 7 | 
							
								5 6
							 | 
							anim12ci | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) ) | 
						
						
							| 8 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
						
							| 9 | 
							
								8
							 | 
							anim1i | 
							 |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							clwlkclwwlklem2 | 
							 |-  ( ( ( E : dom E -1-1-> R /\ f e. Word dom E ) /\ ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
						
							| 12 | 
							
								4 7 10 11
							 | 
							syl3anc | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
						
							| 13 | 
							
								
							 | 
							lencl | 
							 |-  ( P e. Word V -> ( # ` P ) e. NN0 )  | 
						
						
							| 14 | 
							
								
							 | 
							lencl | 
							 |-  ( f e. Word dom E -> ( # ` f ) e. NN0 )  | 
						
						
							| 15 | 
							
								
							 | 
							ffz0hash | 
							 |-  ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( # ` P ) = ( ( # ` f ) + 1 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` f ) + 1 ) - 1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							 |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nn0cn | 
							 |-  ( ( # ` f ) e. NN0 -> ( # ` f ) e. CC )  | 
						
						
							| 19 | 
							
								
							 | 
							peano2cn | 
							 |-  ( ( # ` f ) e. CC -> ( ( # ` f ) + 1 ) e. CC )  | 
						
						
							| 20 | 
							
								
							 | 
							peano2cnm | 
							 |-  ( ( ( # ` f ) + 1 ) e. CC -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							3syl | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC )  | 
						
						
							| 22 | 
							
								21
							 | 
							subid1d | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( ( ( # ` f ) + 1 ) - 1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( # ` f ) e. NN0 -> 1 e. CC )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							pncand | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) = ( # ` f ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							eqtrd | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( # ` f ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` f ) - 1 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							oveq2d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) = ( 0 ..^ ( ( # ` f ) - 1 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							raleqdv | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 2 ) = ( ( ( # ` f ) + 1 ) - 2 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							2cnd | 
							 |-  ( ( # ` f ) e. NN0 -> 2 e. CC )  | 
						
						
							| 33 | 
							
								18 32 23
							 | 
							subsub3d | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( ( # ` f ) + 1 ) - 2 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							2m1e1 | 
							 |-  ( 2 - 1 ) = 1  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							 |-  ( ( # ` f ) e. NN0 -> ( 2 - 1 ) = 1 )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq2d | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( # ` f ) - 1 ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eqtr3d | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							 |-  ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) )  | 
						
						
							| 39 | 
							
								31 38
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( # ` P ) - 2 ) = ( ( # ` f ) - 1 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							fveq2d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( P ` ( ( # ` P ) - 2 ) ) = ( P ` ( ( # ` f ) - 1 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							preq1d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } ) | 
						
						
							| 42 | 
							
								41
							 | 
							eleq1d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) | 
						
						
							| 43 | 
							
								30 42
							 | 
							anbi12d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) <-> ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
						
							| 44 | 
							
								43
							 | 
							anbi2d | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 45 | 
							
								
							 | 
							3anass | 
							 |-  ( ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
						
							| 46 | 
							
								44 45
							 | 
							bitr4di | 
							 |-  ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
						
							| 47 | 
							
								46
							 | 
							expcom | 
							 |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 48 | 
							
								47
							 | 
							expd | 
							 |-  ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 49 | 
							
								15 48
							 | 
							syl | 
							 |-  ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 50 | 
							
								49
							 | 
							ex | 
							 |-  ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
						
							| 51 | 
							
								50
							 | 
							com23 | 
							 |-  ( ( # ` f ) e. NN0 -> ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) | 
						
						
							| 52 | 
							
								14 14 51
							 | 
							sylc | 
							 |-  ( f e. Word dom E -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) | 
						
						
							| 53 | 
							
								52
							 | 
							imp | 
							 |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 54 | 
							
								53
							 | 
							3adant3 | 
							 |-  ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							 |-  ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 56 | 
							
								13 55
							 | 
							syl5com | 
							 |-  ( P e. Word V -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 57 | 
							
								56
							 | 
							3ad2ant2 | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 58 | 
							
								57
							 | 
							imp | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
						
							| 59 | 
							
								12 58
							 | 
							mpbird | 
							 |-  ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) | 
						
						
							| 60 | 
							
								59
							 | 
							ex | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 61 | 
							
								60
							 | 
							exlimdv | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) | 
						
						
							| 62 | 
							
								
							 | 
							clwlkclwwlklem1 | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) ) | 
						
						
							| 63 | 
							
								61 62
							 | 
							impbid | 
							 |-  ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |