| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwlke.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isclwlke.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | clwlkcomp.1 |  |-  F = ( 1st ` W ) | 
						
							| 4 |  | clwlkcomp.2 |  |-  P = ( 2nd ` W ) | 
						
							| 5 | 3 | eqcomi |  |-  ( 1st ` W ) = F | 
						
							| 6 | 4 | eqcomi |  |-  ( 2nd ` W ) = P | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) | 
						
							| 8 |  | eqop |  |-  ( W e. ( S X. T ) -> ( W = <. F , P >. <-> ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) ) ) | 
						
							| 9 | 7 8 | mpbiri |  |-  ( W e. ( S X. T ) -> W = <. F , P >. ) | 
						
							| 10 | 9 | eleq1d |  |-  ( W e. ( S X. T ) -> ( W e. ( ClWalks ` G ) <-> <. F , P >. e. ( ClWalks ` G ) ) ) | 
						
							| 11 |  | df-br |  |-  ( F ( ClWalks ` G ) P <-> <. F , P >. e. ( ClWalks ` G ) ) | 
						
							| 12 | 10 11 | bitr4di |  |-  ( W e. ( S X. T ) -> ( W e. ( ClWalks ` G ) <-> F ( ClWalks ` G ) P ) ) | 
						
							| 13 | 1 2 | isclwlke |  |-  ( G e. X -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) | 
						
							| 14 | 12 13 | sylan9bbr |  |-  ( ( G e. X /\ W e. ( S X. T ) ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |