Step |
Hyp |
Ref |
Expression |
1 |
|
clwlknon2num.v |
|- V = ( Vtx ` G ) |
2 |
|
rusgrusgr |
|- ( G RegUSGraph K -> G e. USGraph ) |
3 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
4 |
2 3
|
syl |
|- ( G RegUSGraph K -> G e. USPGraph ) |
5 |
4
|
3ad2ant2 |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> G e. USPGraph ) |
6 |
1
|
eleq2i |
|- ( X e. V <-> X e. ( Vtx ` G ) ) |
7 |
6
|
biimpi |
|- ( X e. V -> X e. ( Vtx ` G ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> X e. ( Vtx ` G ) ) |
9 |
|
2nn |
|- 2 e. NN |
10 |
9
|
a1i |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> 2 e. NN ) |
11 |
|
clwwlknonclwlknonen |
|- ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ 2 e. NN ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) |
12 |
5 8 10 11
|
syl3anc |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) |
13 |
2
|
anim2i |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( V e. Fin /\ G e. USGraph ) ) |
14 |
13
|
ancomd |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( G e. USGraph /\ V e. Fin ) ) |
15 |
1
|
isfusgr |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
16 |
14 15
|
sylibr |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) |
17 |
16
|
3adant3 |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> G e. FinUSGraph ) |
18 |
|
2nn0 |
|- 2 e. NN0 |
19 |
18
|
a1i |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> 2 e. NN0 ) |
20 |
|
wlksnfi |
|- ( ( G e. FinUSGraph /\ 2 e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } e. Fin ) |
21 |
17 19 20
|
syl2anc |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } e. Fin ) |
22 |
|
clwlkswks |
|- ( ClWalks ` G ) C_ ( Walks ` G ) |
23 |
22
|
a1i |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( ClWalks ` G ) C_ ( Walks ` G ) ) |
24 |
|
simp2l |
|- ( ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) /\ ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = 2 ) |
25 |
23 24
|
rabssrabd |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } ) |
26 |
21 25
|
ssfid |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin ) |
27 |
1
|
clwwlknonfin |
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) |
28 |
27
|
3ad2ant1 |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) |
29 |
|
hashen |
|- ( ( { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin /\ ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) -> ( ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) <-> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) ) |
30 |
26 28 29
|
syl2anc |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) <-> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) ) |
31 |
12 30
|
mpbird |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) ) |
32 |
7
|
anim2i |
|- ( ( G RegUSGraph K /\ X e. V ) -> ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) ) |
33 |
32
|
3adant1 |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) ) |
34 |
|
clwwlknon2num |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |
35 |
33 34
|
syl |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |
36 |
31 35
|
eqtrd |
|- ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = K ) |