| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( ClWalks ` G ) e. _V |
| 2 |
1
|
rabex |
|- { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } e. _V |
| 3 |
2
|
a1i |
|- ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } e. _V ) |
| 4 |
|
eqid |
|- ( 1st ` c ) = ( 1st ` c ) |
| 5 |
|
eqid |
|- ( 2nd ` c ) = ( 2nd ` c ) |
| 6 |
|
eqid |
|- { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |
| 7 |
|
eqid |
|- ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) |
| 8 |
4 5 6 7
|
clwlknf1oclwwlkn |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } -1-1-onto-> ( N ClWWalksN G ) ) |
| 9 |
3 8
|
hasheqf1od |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( # ` { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } ) = ( # ` ( N ClWWalksN G ) ) ) |
| 10 |
9
|
eqcomd |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( # ` ( N ClWWalksN G ) ) = ( # ` { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } ) ) |