Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( N = ( # ` W ) -> ( W cyclShift N ) = ( W cyclShift ( # ` W ) ) ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
clwwlkbp |
|- ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) ) |
4 |
3
|
simp2d |
|- ( W e. ( ClWWalks ` G ) -> W e. Word ( Vtx ` G ) ) |
5 |
|
cshwn |
|- ( W e. Word ( Vtx ` G ) -> ( W cyclShift ( # ` W ) ) = W ) |
6 |
4 5
|
syl |
|- ( W e. ( ClWWalks ` G ) -> ( W cyclShift ( # ` W ) ) = W ) |
7 |
6
|
adantr |
|- ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W cyclShift ( # ` W ) ) = W ) |
8 |
1 7
|
sylan9eq |
|- ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) = W ) |
9 |
|
simprl |
|- ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> W e. ( ClWWalks ` G ) ) |
10 |
8 9
|
eqeltrd |
|- ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |
11 |
|
simprl |
|- ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> W e. ( ClWWalks ` G ) ) |
12 |
|
df-ne |
|- ( N =/= ( # ` W ) <-> -. N = ( # ` W ) ) |
13 |
|
fzofzim |
|- ( ( N =/= ( # ` W ) /\ N e. ( 0 ... ( # ` W ) ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) |
14 |
13
|
expcom |
|- ( N e. ( 0 ... ( # ` W ) ) -> ( N =/= ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) |
15 |
12 14
|
syl5bir |
|- ( N e. ( 0 ... ( # ` W ) ) -> ( -. N = ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) |
16 |
15
|
adantl |
|- ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( -. N = ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) |
17 |
16
|
impcom |
|- ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) |
18 |
|
clwwisshclwws |
|- ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |
19 |
11 17 18
|
syl2anc |
|- ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |
20 |
10 19
|
pm2.61ian |
|- ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |