| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
|- ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) |
| 2 |
1
|
rabbidv |
|- ( v = X -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } = { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } ) |
| 3 |
|
oveq1 |
|- ( n = 0 -> ( n ClWWalksN G ) = ( 0 ClWWalksN G ) ) |
| 4 |
|
clwwlkn0 |
|- ( 0 ClWWalksN G ) = (/) |
| 5 |
3 4
|
eqtrdi |
|- ( n = 0 -> ( n ClWWalksN G ) = (/) ) |
| 6 |
5
|
rabeqdv |
|- ( n = 0 -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } = { w e. (/) | ( w ` 0 ) = X } ) |
| 7 |
|
clwwlknonmpo |
|- ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) |
| 8 |
|
0ex |
|- (/) e. _V |
| 9 |
8
|
rabex |
|- { w e. (/) | ( w ` 0 ) = X } e. _V |
| 10 |
2 6 7 9
|
ovmpo |
|- ( ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = { w e. (/) | ( w ` 0 ) = X } ) |
| 11 |
|
rab0 |
|- { w e. (/) | ( w ` 0 ) = X } = (/) |
| 12 |
10 11
|
eqtrdi |
|- ( ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = (/) ) |
| 13 |
7
|
mpondm0 |
|- ( -. ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = (/) ) |
| 14 |
12 13
|
pm2.61i |
|- ( X ( ClWWalksNOn ` G ) 0 ) = (/) |