Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
1 2
|
isclwwlk |
|- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
4 |
|
lsw1 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( lastS ` W ) = ( W ` 0 ) ) |
5 |
4
|
preq1d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 0 ) } ) |
6 |
5
|
eleq1d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
7 |
6
|
biimpd |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
8 |
7
|
ex |
|- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = 1 -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
9 |
8
|
com23 |
|- ( W e. Word ( Vtx ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
10 |
9
|
adantr |
|- ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
11 |
10
|
imp |
|- ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
12 |
11
|
3adant2 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
13 |
3 12
|
sylbi |
|- ( W e. ( ClWWalks ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
14 |
13
|
imp |
|- ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = 1 ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) |