| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> A e. Word ( Vtx ` G ) ) |
| 2 |
|
simplr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> B e. Word ( Vtx ` G ) ) |
| 3 |
|
lencl |
|- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. NN0 ) |
| 4 |
3
|
nn0zd |
|- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ZZ ) |
| 5 |
|
fzossrbm1 |
|- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 6 |
4 5
|
syl |
|- ( A e. Word ( Vtx ` G ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 8 |
7
|
sselda |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` A ) ) ) |
| 9 |
|
ccatval1 |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) |
| 10 |
1 2 8 9
|
syl3anc |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) |
| 11 |
4
|
ad2antrr |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` A ) e. ZZ ) |
| 12 |
|
elfzom1elp1fzo |
|- ( ( ( # ` A ) e. ZZ /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 13 |
11 12
|
sylan |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 14 |
|
ccatval1 |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) |
| 15 |
1 2 13 14
|
syl3anc |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) |
| 16 |
10 15
|
preq12d |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( A ` i ) , ( A ` ( i + 1 ) ) } ) |
| 17 |
16
|
eleq1d |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 18 |
17
|
biimprd |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 19 |
18
|
ralimdva |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 20 |
19
|
impancom |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 21 |
20
|
3adant3 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 22 |
21
|
com12 |
|- ( B e. Word ( Vtx ` G ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 23 |
22
|
adantr |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 25 |
24
|
impcom |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 26 |
25
|
3adant3 |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 27 |
|
simprl |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A e. Word ( Vtx ` G ) ) |
| 28 |
|
simpll |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) |
| 29 |
|
simprr |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A =/= (/) ) |
| 30 |
|
ccatval1lsw |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| 31 |
27 28 29 30
|
syl3anc |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| 32 |
31
|
adantr |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| 33 |
3
|
nn0cnd |
|- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. CC ) |
| 34 |
|
npcan1 |
|- ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
| 35 |
33 34
|
syl |
|- ( A e. Word ( Vtx ` G ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
| 36 |
35
|
ad2antrl |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
| 37 |
36
|
fveq2d |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( ( A ++ B ) ` ( # ` A ) ) ) |
| 38 |
|
simplr |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B =/= (/) ) |
| 39 |
|
ccatval21sw |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |
| 40 |
27 28 38 39
|
syl3anc |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |
| 41 |
37 40
|
eqtrd |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) |
| 42 |
41
|
adantr |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) |
| 43 |
|
simpr |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 44 |
42 43
|
eqtr4d |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( A ` 0 ) ) |
| 45 |
32 44
|
preq12d |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } = { ( lastS ` A ) , ( A ` 0 ) } ) |
| 46 |
45
|
eleq1d |
|- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) <-> { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) ) |
| 47 |
46
|
exbiri |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 48 |
47
|
com23 |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 49 |
48
|
expimpd |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 50 |
49
|
3ad2ant1 |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 51 |
50
|
com12 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 52 |
51
|
3adant2 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 53 |
52
|
3imp |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 54 |
|
ralunb |
|- ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 55 |
|
ovex |
|- ( ( # ` A ) - 1 ) e. _V |
| 56 |
|
fveq2 |
|- ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` i ) = ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) ) |
| 57 |
|
fvoveq1 |
|- ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) ) |
| 58 |
56 57
|
preq12d |
|- ( i = ( ( # ` A ) - 1 ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } ) |
| 59 |
58
|
eleq1d |
|- ( i = ( ( # ` A ) - 1 ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 60 |
55 59
|
ralsn |
|- ( A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 61 |
60
|
anbi2i |
|- ( ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 62 |
54 61
|
bitri |
|- ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 63 |
26 53 62
|
sylanbrc |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 64 |
|
0z |
|- 0 e. ZZ |
| 65 |
|
lennncl |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
| 66 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 67 |
66
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 68 |
67
|
eleq2i |
|- ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 69 |
|
elnnuz |
|- ( ( # ` A ) e. NN <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 70 |
68 69
|
bitr4i |
|- ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. NN ) |
| 71 |
65 70
|
sylibr |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 72 |
|
fzosplitsnm1 |
|- ( ( 0 e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) |
| 73 |
64 71 72
|
sylancr |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) |
| 74 |
73
|
raleqdv |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 75 |
74
|
3ad2ant1 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 76 |
75
|
3ad2ant1 |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 77 |
63 76
|
mpbird |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 78 |
|
lencl |
|- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. NN0 ) |
| 79 |
78
|
nn0zd |
|- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. ZZ ) |
| 80 |
|
peano2zm |
|- ( ( # ` B ) e. ZZ -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 81 |
79 80
|
syl |
|- ( B e. Word ( Vtx ` G ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 82 |
81
|
ad2antrl |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 83 |
82
|
adantr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 84 |
83
|
anim1ci |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) ) |
| 85 |
|
fzosubel3 |
|- ( ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) -> ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 86 |
|
fveq2 |
|- ( j = ( i - ( # ` A ) ) -> ( B ` j ) = ( B ` ( i - ( # ` A ) ) ) ) |
| 87 |
|
fvoveq1 |
|- ( j = ( i - ( # ` A ) ) -> ( B ` ( j + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
| 88 |
86 87
|
preq12d |
|- ( j = ( i - ( # ` A ) ) -> { ( B ` j ) , ( B ` ( j + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) |
| 89 |
88
|
eleq1d |
|- ( j = ( i - ( # ` A ) ) -> ( { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 90 |
89
|
rspcv |
|- ( ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 91 |
84 85 90
|
3syl |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 92 |
|
simp-4l |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> A e. Word ( Vtx ` G ) ) |
| 93 |
|
simprl |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) |
| 94 |
93
|
ad2antrr |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> B e. Word ( Vtx ` G ) ) |
| 95 |
3
|
adantr |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN0 ) |
| 96 |
78
|
adantr |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN0 ) |
| 97 |
|
nn0addcl |
|- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. NN0 ) |
| 98 |
97
|
nn0zd |
|- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 99 |
95 96 98
|
syl2an |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 100 |
|
1nn0 |
|- 1 e. NN0 |
| 101 |
|
eluzmn |
|- ( ( ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ 1 e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 102 |
99 100 101
|
sylancl |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 103 |
33
|
ad2antrr |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` A ) e. CC ) |
| 104 |
78
|
nn0cnd |
|- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. CC ) |
| 105 |
104
|
ad2antrl |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` B ) e. CC ) |
| 106 |
|
1cnd |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> 1 e. CC ) |
| 107 |
103 105 106
|
addsubassd |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) |
| 108 |
107
|
fveq2d |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 109 |
102 108
|
eleqtrd |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 110 |
|
fzoss2 |
|- ( ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 111 |
109 110
|
syl |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 112 |
111
|
adantr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 113 |
112
|
sselda |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 114 |
|
ccatval2 |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) |
| 115 |
92 94 113 114
|
syl3anc |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) |
| 116 |
107
|
oveq2d |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 117 |
116
|
eleq2d |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 119 |
|
eluzmn |
|- ( ( ( # ` A ) e. ZZ /\ 1 e. NN0 ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
| 120 |
4 100 119
|
sylancl |
|- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
| 121 |
120
|
ad3antrrr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
| 122 |
|
fzoss1 |
|- ( ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 123 |
121 122
|
syl |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 124 |
123
|
sseld |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) |
| 125 |
118 124
|
sylbird |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) |
| 126 |
125
|
imp |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 127 |
4
|
adantr |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ZZ ) |
| 128 |
79
|
adantr |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. ZZ ) |
| 129 |
|
simpl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( # ` A ) e. ZZ ) |
| 130 |
|
zaddcl |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 131 |
129 130
|
jca |
|- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 132 |
127 128 131
|
syl2an |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 133 |
132
|
adantr |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 134 |
|
elfzoelz |
|- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ZZ ) |
| 135 |
|
1zzd |
|- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> 1 e. ZZ ) |
| 136 |
134 135
|
jca |
|- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( i e. ZZ /\ 1 e. ZZ ) ) |
| 137 |
|
elfzomelpfzo |
|- ( ( ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) /\ ( i e. ZZ /\ 1 e. ZZ ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 138 |
133 136 137
|
syl2an |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 139 |
126 138
|
mpbid |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 140 |
|
ccatval2 |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) |
| 141 |
92 94 139 140
|
syl3anc |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) |
| 142 |
134
|
zcnd |
|- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. CC ) |
| 143 |
142
|
adantl |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. CC ) |
| 144 |
|
1cnd |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> 1 e. CC ) |
| 145 |
103
|
ad2antrr |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( # ` A ) e. CC ) |
| 146 |
143 144 145
|
addsubd |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( i + 1 ) - ( # ` A ) ) = ( ( i - ( # ` A ) ) + 1 ) ) |
| 147 |
146
|
fveq2d |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( B ` ( ( i + 1 ) - ( # ` A ) ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
| 148 |
141 147
|
eqtrd |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
| 149 |
115 148
|
preq12d |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) |
| 150 |
149
|
eleq1d |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 151 |
91 150
|
sylibrd |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 152 |
151
|
impancom |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 153 |
152
|
ralrimiv |
|- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 154 |
153
|
exp31 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 155 |
154
|
expcom |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 156 |
155
|
com23 |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 157 |
156
|
com24 |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 158 |
157
|
imp |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 159 |
158
|
3adant3 |
|- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 160 |
159
|
com12 |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 161 |
160
|
3ad2ant1 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 162 |
161
|
3imp |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 163 |
|
ralunb |
|- ( A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 164 |
77 162 163
|
sylanbrc |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 165 |
|
ccatlen |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 166 |
165
|
oveq1d |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 167 |
166
|
ad2ant2r |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 168 |
167 107
|
eqtrd |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) |
| 169 |
168
|
oveq2d |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 170 |
|
elnn0uz |
|- ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 171 |
3 170
|
sylib |
|- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 172 |
171
|
adantr |
|- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 173 |
|
lennncl |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
| 174 |
|
nnm1nn0 |
|- ( ( # ` B ) e. NN -> ( ( # ` B ) - 1 ) e. NN0 ) |
| 175 |
173 174
|
syl |
|- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( # ` B ) - 1 ) e. NN0 ) |
| 176 |
|
fzoun |
|- ( ( ( # ` A ) e. ( ZZ>= ` 0 ) /\ ( ( # ` B ) - 1 ) e. NN0 ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 177 |
172 175 176
|
syl2an |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 178 |
169 177
|
eqtrd |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 179 |
178
|
3ad2antr1 |
|- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 180 |
179
|
3ad2antl1 |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 181 |
180
|
3adant3 |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 182 |
164 181
|
raleqtrrdv |
|- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |