Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkf1o.d |
|- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
2 |
|
ccatws1n0 |
|- ( P e. Word ( Vtx ` G ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
3 |
2
|
adantr |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
4 |
3
|
3ad2ant2 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) |
5 |
|
simprl |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> P e. Word ( Vtx ` G ) ) |
6 |
|
fstwrdne0 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
7 |
6
|
s1cld |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) |
8 |
|
ccatcl |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
9 |
5 7 8
|
syl2anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
10 |
9
|
3adant3 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) |
11 |
5
|
adantr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> P e. Word ( Vtx ` G ) ) |
12 |
7
|
adantr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) |
13 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ ( N - 1 ) ) -> i e. NN0 ) |
14 |
13
|
adantl |
|- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. NN0 ) |
15 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
16 |
15
|
adantr |
|- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> N e. ZZ ) |
17 |
|
elfzo0 |
|- ( i e. ( 0 ..^ ( N - 1 ) ) <-> ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) ) |
18 |
|
nn0re |
|- ( i e. NN0 -> i e. RR ) |
19 |
18
|
adantr |
|- ( ( i e. NN0 /\ N e. NN ) -> i e. RR ) |
20 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
21 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
22 |
20 21
|
syl |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
23 |
22
|
adantl |
|- ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) e. RR ) |
24 |
20
|
adantl |
|- ( ( i e. NN0 /\ N e. NN ) -> N e. RR ) |
25 |
19 23 24
|
3jca |
|- ( ( i e. NN0 /\ N e. NN ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) |
26 |
25
|
adantr |
|- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) |
27 |
20
|
ltm1d |
|- ( N e. NN -> ( N - 1 ) < N ) |
28 |
27
|
adantl |
|- ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) < N ) |
29 |
28
|
anim1ci |
|- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i < ( N - 1 ) /\ ( N - 1 ) < N ) ) |
30 |
|
lttr |
|- ( ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) -> ( ( i < ( N - 1 ) /\ ( N - 1 ) < N ) -> i < N ) ) |
31 |
26 29 30
|
sylc |
|- ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> i < N ) |
32 |
31
|
ex |
|- ( ( i e. NN0 /\ N e. NN ) -> ( i < ( N - 1 ) -> i < N ) ) |
33 |
32
|
impancom |
|- ( ( i e. NN0 /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
34 |
33
|
3adant2 |
|- ( ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
35 |
17 34
|
sylbi |
|- ( i e. ( 0 ..^ ( N - 1 ) ) -> ( N e. NN -> i < N ) ) |
36 |
35
|
impcom |
|- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i < N ) |
37 |
|
elfzo0z |
|- ( i e. ( 0 ..^ N ) <-> ( i e. NN0 /\ N e. ZZ /\ i < N ) ) |
38 |
14 16 36 37
|
syl3anbrc |
|- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) |
39 |
38
|
adantlr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) |
40 |
|
oveq2 |
|- ( ( # ` P ) = N -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
41 |
40
|
eleq2d |
|- ( ( # ` P ) = N -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
42 |
41
|
ad2antll |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
43 |
42
|
adantr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) |
44 |
39 43
|
mpbird |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ ( # ` P ) ) ) |
45 |
|
ccatval1 |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) |
46 |
11 12 44 45
|
syl3anc |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) |
47 |
|
elfzom1p1elfzo |
|- ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
48 |
47
|
adantlr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
49 |
40
|
ad2antll |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
50 |
49
|
adantr |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) |
51 |
48 50
|
eleqtrrd |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
52 |
|
ccatval1 |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) |
53 |
11 12 51 52
|
syl3anc |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) |
54 |
46 53
|
preq12d |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
55 |
54
|
eleq1d |
|- ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
56 |
55
|
ralbidva |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
57 |
56
|
biimprcd |
|- ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
58 |
57
|
adantr |
|- ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
59 |
58
|
expdcom |
|- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
60 |
59
|
3imp |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
61 |
|
fzo0end |
|- ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) |
62 |
40
|
eleq2d |
|- ( ( # ` P ) = N -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) |
63 |
62
|
adantl |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) |
64 |
61 63
|
syl5ibrcom |
|- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) ) |
65 |
64
|
imp |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
66 |
|
ccatval1 |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) |
67 |
5 7 65 66
|
syl3anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) |
68 |
|
lsw |
|- ( P e. Word ( Vtx ` G ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
69 |
68
|
adantr |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
70 |
|
fvoveq1 |
|- ( ( # ` P ) = N -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) |
71 |
70
|
adantl |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) |
72 |
69 71
|
eqtr2d |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) |
73 |
72
|
adantl |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) |
74 |
67 73
|
eqtr2d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` P ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) |
75 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
76 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
77 |
75 76
|
npcand |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
78 |
77
|
fveq2d |
|- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
79 |
78
|
adantr |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
80 |
|
fveq2 |
|- ( ( # ` P ) = N -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
81 |
80
|
ad2antll |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) |
82 |
|
ccatws1ls |
|- ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) |
83 |
5 6 82
|
syl2anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) |
84 |
79 81 83
|
3eqtr2rd |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) |
85 |
74 84
|
preq12d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) |
86 |
85
|
eleq1d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
87 |
86
|
biimpcd |
|- ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
88 |
87
|
adantl |
|- ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
89 |
88
|
expdcom |
|- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
90 |
89
|
3imp |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
91 |
|
ovex |
|- ( N - 1 ) e. _V |
92 |
|
fveq2 |
|- ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) |
93 |
|
fvoveq1 |
|- ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) |
94 |
92 93
|
preq12d |
|- ( i = ( N - 1 ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) |
95 |
94
|
eleq1d |
|- ( i = ( N - 1 ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
96 |
91 95
|
ralsn |
|- ( A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
97 |
90 96
|
sylibr |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
98 |
75 76 76
|
addsubd |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
99 |
98
|
oveq2d |
|- ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( 0 ..^ ( ( N - 1 ) + 1 ) ) ) |
100 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
101 |
|
elnn0uz |
|- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
102 |
100 101
|
sylib |
|- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
103 |
|
fzosplitsn |
|- ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
104 |
102 103
|
syl |
|- ( N e. NN -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
105 |
99 104
|
eqtrd |
|- ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) |
106 |
105
|
raleqdv |
|- ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
107 |
|
ralunb |
|- ( A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
108 |
106 107
|
bitrdi |
|- ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
109 |
108
|
3ad2ant1 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
110 |
60 97 109
|
mpbir2and |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
111 |
|
ccatlen |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
112 |
5 7 111
|
syl2anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
113 |
|
id |
|- ( ( # ` P ) = N -> ( # ` P ) = N ) |
114 |
|
s1len |
|- ( # ` <" ( P ` 0 ) "> ) = 1 |
115 |
114
|
a1i |
|- ( ( # ` P ) = N -> ( # ` <" ( P ` 0 ) "> ) = 1 ) |
116 |
113 115
|
oveq12d |
|- ( ( # ` P ) = N -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
117 |
116
|
ad2antll |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
118 |
112 117
|
eqtrd |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
119 |
118
|
3adant3 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) |
120 |
119
|
oveq1d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
121 |
120
|
oveq2d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( 0 ..^ ( ( N + 1 ) - 1 ) ) ) |
122 |
121
|
raleqdv |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
123 |
110 122
|
mpbird |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
124 |
4 10 123
|
3jca |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
125 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
126 |
|
iswwlksn |
|- ( N e. NN0 -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
127 |
125 126
|
syl |
|- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
128 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
129 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
130 |
128 129
|
iswwlks |
|- ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
131 |
130
|
anbi1i |
|- ( ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) |
132 |
127 131
|
bitrdi |
|- ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
133 |
132
|
3ad2ant1 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) |
134 |
124 119 133
|
mpbir2and |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) ) |
135 |
|
lswccats1 |
|- ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
136 |
5 6 135
|
syl2anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
137 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
138 |
137
|
biimpri |
|- ( N e. NN -> 0 e. ( 0 ..^ N ) ) |
139 |
40
|
eleq2d |
|- ( ( # ` P ) = N -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) |
140 |
139
|
adantl |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) |
141 |
138 140
|
syl5ibrcom |
|- ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) ) |
142 |
141
|
imp |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
143 |
|
ccatval1 |
|- ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
144 |
5 7 142 143
|
syl3anc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
145 |
136 144
|
eqtr4d |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
146 |
145
|
3adant3 |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
147 |
|
fveq2 |
|- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( lastS ` w ) = ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) ) |
148 |
|
fveq1 |
|- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( w ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
149 |
147 148
|
eqeq12d |
|- ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( ( lastS ` w ) = ( w ` 0 ) <-> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) |
150 |
149 1
|
elrab2 |
|- ( ( P ++ <" ( P ` 0 ) "> ) e. D <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) /\ ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) |
151 |
134 146 150
|
sylanbrc |
|- ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. D ) |