Metamath Proof Explorer


Theorem clwwlkgt0

Description: There is no empty closed walk (i.e. a closed walk without any edge) represented by a word of vertices. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion clwwlkgt0
|- ( W e. ( ClWWalks ` G ) -> 0 < ( # ` W ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
2 1 clwwlkbp
 |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) )
3 hashgt0
 |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> 0 < ( # ` W ) )
4 3 3adant1
 |-  ( ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> 0 < ( # ` W ) )
5 2 4 syl
 |-  ( W e. ( ClWWalks ` G ) -> 0 < ( # ` W ) )