Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( g = G -> ( ClWWalks ` g ) = ( ClWWalks ` G ) ) |
2 |
1
|
adantl |
|- ( ( n = N /\ g = G ) -> ( ClWWalks ` g ) = ( ClWWalks ` G ) ) |
3 |
|
eqeq2 |
|- ( n = N -> ( ( # ` w ) = n <-> ( # ` w ) = N ) ) |
4 |
3
|
adantr |
|- ( ( n = N /\ g = G ) -> ( ( # ` w ) = n <-> ( # ` w ) = N ) ) |
5 |
2 4
|
rabeqbidv |
|- ( ( n = N /\ g = G ) -> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
6 |
|
df-clwwlkn |
|- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } ) |
7 |
|
fvex |
|- ( ClWWalks ` G ) e. _V |
8 |
7
|
rabex |
|- { w e. ( ClWWalks ` G ) | ( # ` w ) = N } e. _V |
9 |
5 6 8
|
ovmpoa |
|- ( ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
10 |
6
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = (/) ) |
11 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
12 |
11
|
clwwlkbp |
|- ( w e. ( ClWWalks ` G ) -> ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) ) |
13 |
12
|
simp2d |
|- ( w e. ( ClWWalks ` G ) -> w e. Word ( Vtx ` G ) ) |
14 |
|
lencl |
|- ( w e. Word ( Vtx ` G ) -> ( # ` w ) e. NN0 ) |
15 |
13 14
|
syl |
|- ( w e. ( ClWWalks ` G ) -> ( # ` w ) e. NN0 ) |
16 |
|
eleq1 |
|- ( ( # ` w ) = N -> ( ( # ` w ) e. NN0 <-> N e. NN0 ) ) |
17 |
15 16
|
syl5ibcom |
|- ( w e. ( ClWWalks ` G ) -> ( ( # ` w ) = N -> N e. NN0 ) ) |
18 |
17
|
con3rr3 |
|- ( -. N e. NN0 -> ( w e. ( ClWWalks ` G ) -> -. ( # ` w ) = N ) ) |
19 |
18
|
ralrimiv |
|- ( -. N e. NN0 -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
20 |
|
ral0 |
|- A. w e. (/) -. ( # ` w ) = N |
21 |
|
fvprc |
|- ( -. G e. _V -> ( ClWWalks ` G ) = (/) ) |
22 |
21
|
raleqdv |
|- ( -. G e. _V -> ( A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N <-> A. w e. (/) -. ( # ` w ) = N ) ) |
23 |
20 22
|
mpbiri |
|- ( -. G e. _V -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
24 |
19 23
|
jaoi |
|- ( ( -. N e. NN0 \/ -. G e. _V ) -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
25 |
|
ianor |
|- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. N e. NN0 \/ -. G e. _V ) ) |
26 |
|
rabeq0 |
|- ( { w e. ( ClWWalks ` G ) | ( # ` w ) = N } = (/) <-> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
27 |
24 25 26
|
3imtr4i |
|- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( ClWWalks ` G ) | ( # ` w ) = N } = (/) ) |
28 |
10 27
|
eqtr4d |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
29 |
9 28
|
pm2.61i |
|- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } |