| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 4 |
2 3
|
isclwwlknx |
|- ( 1 e. NN -> ( W e. ( 1 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) ) ) |
| 5 |
1 4
|
ax-mp |
|- ( W e. ( 1 ClWWalksN G ) <-> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) ) |
| 6 |
|
3anass |
|- ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 7 |
|
ral0 |
|- A. i e. (/) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) |
| 8 |
|
oveq1 |
|- ( ( # ` W ) = 1 -> ( ( # ` W ) - 1 ) = ( 1 - 1 ) ) |
| 9 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 10 |
8 9
|
eqtrdi |
|- ( ( # ` W ) = 1 -> ( ( # ` W ) - 1 ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( ( # ` W ) = 1 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = ( 0 ..^ 0 ) ) |
| 12 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 13 |
11 12
|
eqtrdi |
|- ( ( # ` W ) = 1 -> ( 0 ..^ ( ( # ` W ) - 1 ) ) = (/) ) |
| 14 |
13
|
raleqdv |
|- ( ( # ` W ) = 1 -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. (/) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. (/) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 16 |
7 15
|
mpbiri |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 17 |
16
|
biantrurd |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 18 |
|
lsw1 |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( lastS ` W ) = ( W ` 0 ) ) |
| 19 |
18
|
ancoms |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> ( lastS ` W ) = ( W ` 0 ) ) |
| 20 |
19
|
preq1d |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 0 ) } ) |
| 21 |
|
dfsn2 |
|- { ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 0 ) } |
| 22 |
20 21
|
eqtr4di |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) } ) |
| 23 |
22
|
eleq1d |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 24 |
17 23
|
bitr3d |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> { ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 25 |
24
|
pm5.32da |
|- ( ( # ` W ) = 1 -> ( ( W e. Word ( Vtx ` G ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 26 |
6 25
|
bitrid |
|- ( ( # ` W ) = 1 -> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 27 |
26
|
pm5.32ri |
|- ( ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) ) |
| 28 |
|
3anass |
|- ( ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) <-> ( ( # ` W ) = 1 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 29 |
|
ancom |
|- ( ( ( # ` W ) = 1 /\ ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) <-> ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) ) |
| 30 |
28 29
|
bitr2i |
|- ( ( ( W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = 1 ) <-> ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 31 |
5 27 30
|
3bitri |
|- ( W e. ( 1 ClWWalksN G ) <-> ( ( # ` W ) = 1 /\ W e. Word ( Vtx ` G ) /\ { ( W ` 0 ) } e. ( Edg ` G ) ) ) |