Metamath Proof Explorer


Theorem clwwlknbp

Description: Basic properties of a closed walk of a fixed length as word. (Contributed by AV, 30-Apr-2021) (Proof shortened by AV, 22-Mar-2022)

Ref Expression
Hypothesis clwwlknwrd.v
|- V = ( Vtx ` G )
Assertion clwwlknbp
|- ( W e. ( N ClWWalksN G ) -> ( W e. Word V /\ ( # ` W ) = N ) )

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v
 |-  V = ( Vtx ` G )
2 1 clwwlknwrd
 |-  ( W e. ( N ClWWalksN G ) -> W e. Word V )
3 clwwlknlen
 |-  ( W e. ( N ClWWalksN G ) -> ( # ` W ) = N )
4 2 3 jca
 |-  ( W e. ( N ClWWalksN G ) -> ( W e. Word V /\ ( # ` W ) = N ) )