Step |
Hyp |
Ref |
Expression |
1 |
|
isclwwlkn |
|- ( A e. ( M ClWWalksN G ) <-> ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) ) |
2 |
|
isclwwlkn |
|- ( B e. ( N ClWWalksN G ) <-> ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) ) |
3 |
|
biid |
|- ( ( A ` 0 ) = ( B ` 0 ) <-> ( A ` 0 ) = ( B ` 0 ) ) |
4 |
|
simpl |
|- ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) -> A e. ( ClWWalks ` G ) ) |
5 |
|
simpl |
|- ( ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) -> B e. ( ClWWalks ` G ) ) |
6 |
|
id |
|- ( ( A ` 0 ) = ( B ` 0 ) -> ( A ` 0 ) = ( B ` 0 ) ) |
7 |
|
clwwlkccat |
|- ( ( A e. ( ClWWalks ` G ) /\ B e. ( ClWWalks ` G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
8 |
4 5 6 7
|
syl3an |
|- ( ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) /\ ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
9 |
1 2 3 8
|
syl3anb |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
10 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
11 |
10
|
clwwlknwrd |
|- ( A e. ( M ClWWalksN G ) -> A e. Word ( Vtx ` G ) ) |
12 |
10
|
clwwlknwrd |
|- ( B e. ( N ClWWalksN G ) -> B e. Word ( Vtx ` G ) ) |
13 |
|
ccatlen |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
14 |
11 12 13
|
syl2an |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
15 |
|
clwwlknlen |
|- ( A e. ( M ClWWalksN G ) -> ( # ` A ) = M ) |
16 |
|
clwwlknlen |
|- ( B e. ( N ClWWalksN G ) -> ( # ` B ) = N ) |
17 |
15 16
|
oveqan12d |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( M + N ) ) |
18 |
14 17
|
eqtrd |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) |
19 |
18
|
3adant3 |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) |
20 |
|
isclwwlkn |
|- ( ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) <-> ( ( A ++ B ) e. ( ClWWalks ` G ) /\ ( # ` ( A ++ B ) ) = ( M + N ) ) ) |
21 |
9 19 20
|
sylanbrc |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) ) |