| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isclwwlkn |
|- ( A e. ( M ClWWalksN G ) <-> ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) ) |
| 2 |
|
isclwwlkn |
|- ( B e. ( N ClWWalksN G ) <-> ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) ) |
| 3 |
|
biid |
|- ( ( A ` 0 ) = ( B ` 0 ) <-> ( A ` 0 ) = ( B ` 0 ) ) |
| 4 |
|
simpl |
|- ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) -> A e. ( ClWWalks ` G ) ) |
| 5 |
|
simpl |
|- ( ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) -> B e. ( ClWWalks ` G ) ) |
| 6 |
|
id |
|- ( ( A ` 0 ) = ( B ` 0 ) -> ( A ` 0 ) = ( B ` 0 ) ) |
| 7 |
|
clwwlkccat |
|- ( ( A e. ( ClWWalks ` G ) /\ B e. ( ClWWalks ` G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
| 8 |
4 5 6 7
|
syl3an |
|- ( ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) /\ ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
| 9 |
1 2 3 8
|
syl3anb |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) |
| 10 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 11 |
10
|
clwwlknwrd |
|- ( A e. ( M ClWWalksN G ) -> A e. Word ( Vtx ` G ) ) |
| 12 |
10
|
clwwlknwrd |
|- ( B e. ( N ClWWalksN G ) -> B e. Word ( Vtx ` G ) ) |
| 13 |
|
ccatlen |
|- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 15 |
|
clwwlknlen |
|- ( A e. ( M ClWWalksN G ) -> ( # ` A ) = M ) |
| 16 |
|
clwwlknlen |
|- ( B e. ( N ClWWalksN G ) -> ( # ` B ) = N ) |
| 17 |
15 16
|
oveqan12d |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( M + N ) ) |
| 18 |
14 17
|
eqtrd |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) |
| 19 |
18
|
3adant3 |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) |
| 20 |
|
isclwwlkn |
|- ( ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) <-> ( ( A ++ B ) e. ( ClWWalks ` G ) /\ ( # ` ( A ++ B ) ) = ( M + N ) ) ) |
| 21 |
9 19 20
|
sylanbrc |
|- ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) ) |