Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknclwwlkdif.a |
|- A = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } |
2 |
|
clwwlknclwwlkdif.b |
|- B = ( X ( N WWalksNOn G ) X ) |
3 |
|
clwwlknclwwlkdif.c |
|- C = { w e. ( N WWalksN G ) | ( w ` 0 ) = X } |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
4
|
iswwlksnon |
|- ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } |
6 |
2 5
|
eqtri |
|- B = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } |
7 |
3 6
|
difeq12i |
|- ( C \ B ) = ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } ) |
8 |
|
difrab |
|- ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) } |
9 |
|
annotanannot |
|- ( ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) <-> ( ( w ` 0 ) = X /\ -. ( w ` N ) = X ) ) |
10 |
|
df-ne |
|- ( ( w ` N ) =/= X <-> -. ( w ` N ) = X ) |
11 |
|
wwlknlsw |
|- ( w e. ( N WWalksN G ) -> ( w ` N ) = ( lastS ` w ) ) |
12 |
11
|
neeq1d |
|- ( w e. ( N WWalksN G ) -> ( ( w ` N ) =/= X <-> ( lastS ` w ) =/= X ) ) |
13 |
10 12
|
bitr3id |
|- ( w e. ( N WWalksN G ) -> ( -. ( w ` N ) = X <-> ( lastS ` w ) =/= X ) ) |
14 |
13
|
anbi2d |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ -. ( w ` N ) = X ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) |
15 |
9 14
|
syl5bb |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) |
16 |
15
|
rabbiia |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ -. ( ( w ` 0 ) = X /\ ( w ` N ) = X ) ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } |
17 |
7 8 16
|
3eqtrri |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } = ( C \ B ) |
18 |
1 17
|
eqtri |
|- A = ( C \ B ) |