| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknclwwlkdif.a |
|- A = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } |
| 2 |
|
clwwlknclwwlkdif.b |
|- B = ( X ( N WWalksNOn G ) X ) |
| 3 |
|
clwwlknclwwlkdifnum.v |
|- V = ( Vtx ` G ) |
| 4 |
|
eqid |
|- { w e. ( N WWalksN G ) | ( w ` 0 ) = X } = { w e. ( N WWalksN G ) | ( w ` 0 ) = X } |
| 5 |
1 2 4
|
clwwlknclwwlkdif |
|- A = ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) |
| 6 |
5
|
fveq2i |
|- ( # ` A ) = ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) |
| 7 |
6
|
a1i |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` A ) = ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) ) |
| 8 |
3
|
eleq1i |
|- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
| 9 |
8
|
biimpi |
|- ( V e. Fin -> ( Vtx ` G ) e. Fin ) |
| 10 |
9
|
adantl |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> ( Vtx ` G ) e. Fin ) |
| 11 |
10
|
adantr |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( Vtx ` G ) e. Fin ) |
| 12 |
|
wwlksnfi |
|- ( ( Vtx ` G ) e. Fin -> ( N WWalksN G ) e. Fin ) |
| 13 |
|
rabfi |
|- ( ( N WWalksN G ) e. Fin -> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin ) |
| 14 |
11 12 13
|
3syl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin ) |
| 15 |
3
|
iswwlksnon |
|- ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } |
| 16 |
|
ancom |
|- ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( w ` N ) = X /\ ( w ` 0 ) = X ) ) |
| 17 |
16
|
rabbii |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } |
| 18 |
15 17
|
eqtri |
|- ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } |
| 19 |
18
|
a1i |
|- ( ( X e. V /\ N e. NN0 ) -> ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } ) |
| 20 |
2 19
|
eqtrid |
|- ( ( X e. V /\ N e. NN0 ) -> B = { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } ) |
| 21 |
|
simpr |
|- ( ( ( w ` N ) = X /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) |
| 22 |
21
|
a1i |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` N ) = X /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) ) |
| 23 |
22
|
ss2rabi |
|- { w e. ( N WWalksN G ) | ( ( w ` N ) = X /\ ( w ` 0 ) = X ) } C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } |
| 24 |
20 23
|
eqsstrdi |
|- ( ( X e. V /\ N e. NN0 ) -> B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) |
| 25 |
24
|
adantl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) |
| 26 |
|
hashssdif |
|- ( ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } e. Fin /\ B C_ { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) -> ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) = ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) ) |
| 27 |
14 25 26
|
syl2anc |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` ( { w e. ( N WWalksN G ) | ( w ` 0 ) = X } \ B ) ) = ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) ) |
| 28 |
|
simpl |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G RegUSGraph K ) |
| 29 |
28
|
adantr |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> G RegUSGraph K ) |
| 30 |
|
simpr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> V e. Fin ) |
| 31 |
30
|
adantr |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> V e. Fin ) |
| 32 |
|
simpl |
|- ( ( X e. V /\ N e. NN0 ) -> X e. V ) |
| 33 |
32
|
adantl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> X e. V ) |
| 34 |
|
simpr |
|- ( ( X e. V /\ N e. NN0 ) -> N e. NN0 ) |
| 35 |
34
|
adantl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> N e. NN0 ) |
| 36 |
3
|
rusgrnumwwlkg |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) = ( K ^ N ) ) |
| 37 |
29 31 33 35 36
|
syl13anc |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) = ( K ^ N ) ) |
| 38 |
37
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = X } ) - ( # ` B ) ) = ( ( K ^ N ) - ( # ` B ) ) ) |
| 39 |
7 27 38
|
3eqtrd |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` A ) = ( ( K ^ N ) - ( # ` B ) ) ) |