Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|- ( G e/ _V <-> -. G e. _V ) |
2 |
|
ianor |
|- ( -. ( N e. NN0 /\ N =/= 0 ) <-> ( -. N e. NN0 \/ -. N =/= 0 ) ) |
3 |
1 2
|
orbi12i |
|- ( ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
4 |
|
df-nel |
|- ( N e/ NN <-> -. N e. NN ) |
5 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
6 |
4 5
|
xchbinx |
|- ( N e/ NN <-> -. ( N e. NN0 /\ N =/= 0 ) ) |
7 |
6
|
orbi2i |
|- ( ( G e/ _V \/ N e/ NN ) <-> ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) ) |
8 |
|
orass |
|- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
9 |
3 7 8
|
3bitr4i |
|- ( ( G e/ _V \/ N e/ NN ) <-> ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) ) |
10 |
|
ianor |
|- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. N e. NN0 \/ -. G e. _V ) ) |
11 |
|
orcom |
|- ( ( -. N e. NN0 \/ -. G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
12 |
10 11
|
bitri |
|- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
13 |
|
df-clwwlkn |
|- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } ) |
14 |
13
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = (/) ) |
15 |
12 14
|
sylbir |
|- ( ( -. G e. _V \/ -. N e. NN0 ) -> ( N ClWWalksN G ) = (/) ) |
16 |
|
nne |
|- ( -. N =/= 0 <-> N = 0 ) |
17 |
|
oveq1 |
|- ( N = 0 -> ( N ClWWalksN G ) = ( 0 ClWWalksN G ) ) |
18 |
|
clwwlkn0 |
|- ( 0 ClWWalksN G ) = (/) |
19 |
17 18
|
eqtrdi |
|- ( N = 0 -> ( N ClWWalksN G ) = (/) ) |
20 |
16 19
|
sylbi |
|- ( -. N =/= 0 -> ( N ClWWalksN G ) = (/) ) |
21 |
15 20
|
jaoi |
|- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) -> ( N ClWWalksN G ) = (/) ) |
22 |
9 21
|
sylbi |
|- ( ( G e/ _V \/ N e/ NN ) -> ( N ClWWalksN G ) = (/) ) |